•

1. Find the first 5 terms of the following sequence:

$$a_n = -2n + 1$$

2. Find a closed form for the following sequence:

$$5, \frac{5}{4}, \frac{5}{16}, \frac{5}{64}, \frac{5}{256}, \dots$$

- 3. Find a recursive form for the following sequence: $3, 4, 7, 12, 19, \ldots$
- 4. For each of the following series, use the Divergence, Alternating series test or Integral test to determine if the series converges.

•
$$\sum_{n=1}^{\infty} \frac{4n^5 + n + 2}{4n^5}.$$

•
$$\sum_{n=1}^{\infty} \frac{(2n^2+1)(-1)^n}{4n^3}.$$

• $\sum_{n=1}^{\infty} \frac{1}{n}$.

1 Answers

Problem One

- 1. $\circ -1, -3, -5, -7, -9$ if you start with n = 1, or 1, -1, -3, -5, -7 if you start with n = 0.
- 2. Answers can vary depending on your choice of starting index. For example, $5\left(\frac{1}{4}\right)^n$ if $n = 0, 1, \ldots$
- 3. Answers can vary depending on your choice of starting index. For example, if $a_0 = 3$ then $a_n = 1a_{n-1} + 2n 1$.
- 4. Question 4
 - $\sum_{n=1}^{\infty} \frac{4n^5 + n + 2}{4n^5}$ diverges by the Divergence test.
 - $\sum_{n=1}^{\infty} \frac{(2n^2+1)(-1)^n}{4n^3}$ converges by the Alternating series test.
 - $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the Integral test.