1. Find the first 5 terms of the following sequence:

$$
a_{n}=-2 n+1
$$

2. Find a closed form for the following sequence:

$$
5, \frac{5}{4}, \frac{5}{16}, \frac{5}{64}, \frac{5}{256}, \ldots
$$

3. Find a recursive form for the following sequence: $-3,4,7,12,19, \ldots$
4. For each of the following series, use the Divergence, Alternating series test or Integral test to determine if the series converges.

- $\sum_{n=1}^{\infty} \frac{4 n^{5}+n+2}{4 n^{5}}$.
- $\sum_{n=1}^{\infty} \frac{\left(2 n^{2}+1\right)(-1)^{n}}{4 n^{3}}$.
- $\sum_{n=1}^{\infty} \frac{1}{n}$.

1 Answers

Problem One

1. $\circ-1,-3,-5,-7,-9$ if you start with $n=1$, or $1,-1,-3,-5,-7$ if you start with $n=0$.
2. ○ Answers can vary depending on your choice of starting index. For example, $5\left(\frac{1}{4}\right)^{n}$ if $n=0,1, \ldots$.
3. o Answers can vary depending on your choice of starting index. For example, if $a_{0}=3$ then $a_{n}=1 a_{n-1}+2 n-1$.
4. Question 4

- $\sum_{n=1}^{\infty} \frac{4 n^{5}+n+2}{4 n^{5}}$ diverges by the Divergence test.
- $\sum_{n=1}^{\infty} \frac{\left(2 n^{2}+1\right)(-1)^{n}}{4 n^{3}}$ converges by the Alternating series test.
- $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the Integral test.

