

# Water and the Fitness of the Environment

Edited by Shawn Lester

PowerPoint<sup>®</sup> Lecture Presentations for

### Biology

*Eighth Edition* Neil Campbell and Jane Reece

#### Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

### Learning objectives:

- List and explain the four properties of water that emerge as a result of its ability to form hydrogen bonds
- 2. Distinguish between the following sets of terms: hydrophobic and hydrophilic substances; a solute, a solvent, and a solution
- 3. Define acid, base, and pH
- 4. Explain how buffers work

### **Overview: The Molecule That Supports All of Life**

- Water is the biological medium on Earth
- All living organisms require water more than any other substance
- Most cells are surrounded by water, and cells themselves are about 70–95% water
- The abundance of water is the main reason the Earth is habitable



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

## **Concept 3.1: The polarity of water molecules results in hydrogen bonding**

- The water molecule is a **polar molecule**: The opposite ends have opposite charges
- Polarity allows water molecules to form hydrogen bonds with each other



#### **Concept 3.2: Four emergent properties of water contribute to Earth's fitness for life**

- Four of water's properties that facilitate an environment for life are:
  - Cohesive behavior
  - Ability to moderate temperature
  - Expansion upon freezing
  - Versatility as a solvent

### Cohesion

- Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion
- Cohesion helps the transport of water against gravity in plants (capillary action)
- Adhesion is an attraction between different substances, for example, between water and plant cell walls



- Surface tension is a measure of how hard it is to break the surface of a liquid
- Surface tension is related to cohesion

• Example: Water Striders/Skippers



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Water absorbs heat from warmer air and releases stored heat to cooler air
- Water can absorb or release a large amount of heat with only a slight change in its own temperature

- **Kinetic energy** is the energy of motion
- Heat is a measure of the *total* amount of kinetic energy due to molecular motion
- **Temperature** measures the intensity of heat due to the *average* kinetic energy of molecules

- The Celsius scale is a measure of temperature using Celsius degrees (°C)
- A calorie (cal) is the amount of heat required to raise the temperature of 1 g of water by 1°C
- The "calories" on food packages are actually kilocalories (kcal), where 1 kcal = 1,000 cal
- The joule (J) is another unit of energy where
  1 J = 0.239 cal, or 1 cal = 4.184 J

- The specific heat of a substance is the amount of heat that must be absorbed or lost for 1 g of that substance to change its temperature by 1°C
- The specific heat of water is 1 cal/g/°C
- Water resists changing its temperature because of its high specific heat

- Water's high specific heat can be traced to hydrogen bonding
  - Heat is absorbed when hydrogen bonds break
  - Heat is released when hydrogen bonds form
- The high specific heat of water minimizes temperature fluctuations to within limits that permit life

| Some common specific heats and heat capacities: |            |                    |
|-------------------------------------------------|------------|--------------------|
| Substance                                       | S (J/g 0C) | C (J/0C) for 100 g |
| Air                                             | 1.01       | 101                |
| Aluminum                                        | 0.902      | 90.2               |
| Copper                                          | 0.385      | 38.5               |
| Gold                                            | 0.129      | 12.9               |
| Iron                                            | 0.450      | 45.0               |
| Mercury                                         | 0.140      | 14.0               |
| NaCl                                            | 0.864      | 86.4               |
| Ice                                             | 203        | 203                |
| Water                                           | 4.179      | 417.9              |
|                                                 |            |                    |

**Heat capacity,** ratio of heat absorbed by a material relative to the temperature change of that material

- *Evaporation* is transformation of a substance from liquid to gas
- Heat of vaporization is the heat a liquid must absorb for 1 g to be converted to gas
- As a liquid evaporates, its remaining surface cools, a process called **evaporative cooling**
- Evaporative cooling of water helps stabilize temperatures in organisms and bodies of water

### **Insulation of Bodies of Water by Floating Ice**

- Ice floats in liquid water because hydrogen bonds in ice are more "ordered," making ice less dense
- Water reaches its greatest density at 4°C
- If ice sank, all bodies of water would eventually freeze solid, making life impossible on Earth
  - less dense floating ice insulates water underneath keeping it liquid



- A solution is a liquid that is a homogeneous mixture of substances
- A **solvent** is the dissolving agent of a solution
- The **solute** is the substance that is dissolved
- An aqueous solution is one in which water is the solvent

- Water is a versatile solvent due to its polarity, which allows it to form hydrogen bonds easily
- When an ionic compound is dissolved in water, each ion is surrounded by a sphere of water molecules called a hydration shell



- Water can also dissolve compounds made of nonionic polar molecules
- Even large polar molecules such as proteins can dissolve in water if they have ionic and polar regions



(a) Lysozyme molecule in a nonaqueous environment



(b) Lysozyme molecule (purple) in an aqueous environment

δ+ δ+ δ+

(c) lonic and polar regions on the protein's surface attract water molecules.

Hydrophilic and Hydrophobic Substances

- A hydrophilic substance is one that has an affinity for water
- A hydrophobic substance is one that does not have an affinity for water
- Oil molecules are hydrophobic because they have relatively nonpolar bonds
- A colloid is a stable suspension of fine particles in a liquid

Solute Concentration in Aqueous Solutions

- Most biochemical reactions occur in water
- Chemical reactions depend on collisions of molecules and therefore on the concentration of solutes in an aqueous solution

- Molecular mass is the sum of all masses of all atoms in a molecule
- Numbers of molecules are usually measured in moles, where 1 mole (mol) = 6.02 x 10<sup>23</sup> molecules
- Avogadro's number and the unit *dalton* were defined such that  $6.02 \times 10^{23}$  daltons = 1 g
- (a dalton is equivalent to atomic mass unit, aka molecular weight, or g/mol)
- Molarity (*M*) is the number of moles of solute per liter of solution

To make a 1 *M* solution of calcium chloride (CaCl<sub>2</sub>), you would place how many gm of CaCl<sub>2</sub> into a container and then add how much pure water?

[mass of a Ca atom = 40; mass of a Cl atom = 35; mass of an O atom = 16; mass of an H atom = 1]

- A. 75 gm of  $CaCl_2$  then add 1 liter of water
- B. 110 gm of CaCl<sub>2</sub> then add 1 liter of water



- C. 128 gm of CaCl<sub>2</sub> then add 1 liter of water
- D. 75 gm of CaCl<sub>2</sub> then add water to make a total volume of 1 liter
- E. 110 gm of CaCl<sub>2</sub> then add water to make a total volume of 1 liter

### **Concept 3.3: Acidic and basic conditions affect living organisms**

- A hydrogen atom in a hydrogen bond between two water molecules can shift from one to the other:
  - The hydrogen atom leaves its electron behind and is transferred as a proton, or hydrogen ion (H<sup>+</sup>)
  - The molecule with the extra proton is now a hydronium ion (H<sub>3</sub>O<sup>+</sup>), though it is often represented as H<sup>+</sup>
  - The molecule that lost the proton is now a hydroxide ion (OH<sup>-</sup>)

 Water is in a state of dynamic equilibrium in which water molecules dissociate at the same rate at which they are being reformed



- Though statistically rare, the dissociation of water molecules has a great effect on organisms
- Changes in concentrations of H<sup>+</sup> and OH<sup>-</sup> can drastically affect the chemistry of a cell

- Concentrations of H<sup>+</sup> and OH<sup>-</sup> are equal in pure water
- Adding certain solutes, called acids and bases, modifies the concentrations of H<sup>+</sup> and OH<sup>-</sup>
- Biologists use something called the pH scale to describe whether a solution is acidic or basic (the opposite of acidic)

- An acid is any substance that increases the H<sup>+</sup> concentration of a solution
- A base is any substance that reduces the H<sup>+</sup> concentration of a solution

The pH Scale

- In any aqueous solution at 25°C the product of H<sup>+</sup> and OH<sup>-</sup> is constant and can be written as [H<sup>+</sup>][OH<sup>-</sup>] = 10<sup>-14</sup>
- The **pH** of a solution is defined by the negative logarithm of H<sup>+</sup> concentration, written as pH = -log [H<sup>+</sup>]
- For a neutral aqueous solution  $[H^+]$  is  $10^{-7} = -(-7) = 7$

- Acidic solutions have pH values less than 7
- Basic solutions have pH values greater than 7
- Most biological fluids have pH values in the range of 6 to 8



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.



- The internal pH of most living cells must remain close to pH 7
- Buffers are substances that minimize changes in concentrations of H<sup>+</sup> and OH<sup>-</sup> in a solution
- Most buffers consist of an acid-base pair that reversibly combines with H<sup>+</sup>
- Our cells and tissues use bicarbonate and phosphate to maintain proper pH

In humans, blood pH is around 7.4, and a decrease in blood pH to 6.4 would be fatal. A drop by 1 pH unit represents which of these?

- A. 1/10 as many H<sup>+</sup> ions in the solution
- B. 1/7 as many H<sup>+</sup> ions in the solution
- C. 1/2 as many H<sup>+</sup> ions in the solution
- D. twice as many H<sup>+</sup> ions in the solution
- E. ten times as many H<sup>+</sup> ions in the solution

The chemical equilibrium between carbonic acid and bicarbonate acts as a pH regulator in our blood. As the blood pH begins to rise, what will happen?

 $\begin{array}{cccc} H_2CO_3 & \leftrightarrow & HCO_3^- & + & H^+ \\ Carbonic \ acid & Bicarbonate \ ion & Hydrogen \ ion \end{array}$ 

- A. reaction proceeds to the right; more carbonic acid dissociates
- B. reaction proceeds to the right; more carbonic acid forms
- C. reaction proceeds to the left; more carbonic acid dissociates
- D. reaction proceeds to the left; more carbonic acid forms