Chapter 10

Photosynthesis

Edited by Shawn Lester

PowerPoint® Lecture Presentations for

Biology

Eighth Edition
Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Overview: The Process That Feeds the Biosphere

- Photosynthesis is the process that converts solar energy into chemical energy
- Directly or indirectly, photosynthesis nourishes almost the entire living world

- Autotrophs sustain themselves without eating anything derived from other organisms
- Autotrophs are the producers of the biosphere, producing organic molecules from CO₂ and other inorganic molecules
- Almost all plants are photoautotrophs, using the energy of sunlight to make organic molecules from H₂O and CO₂

- Photosynthesis occurs in plants, algae, certain other protists, and some prokaryotes
- These organisms feed not only themselves but also most of the living world

Fig. 10-2

(a) Plants

- Heterotrophs obtain their organic material from other organisms
- Heterotrophs are the consumers of the biosphere
- Almost all heterotrophs, including humans, depend on photoautotrophs for food and O₂

Trophic Levels – Food Chains

Major Trophic Levels

Trophic Level	Source of Energy	Examples
Producers	Solar energy	Green plants, photosynthetic protists and bacteria
Herbivores	Producers	Grasshoppers, water fleas, antelope, termites
Primary Camivores	Herbivores	Wolves, spiders, some snakes, warblers
Secondary Camivores	Primary carnivores	Killer whales, tuna, falcons
Omnivores	Several trophic levels	Humans, rats, opossums, bears, racoons, crabs
Detritivores and Decomposers	Wastes and dead bodies of other organisms	Fungi, many bacteria, earthworms, vultures

Concept 10.1: Photosynthesis converts light energy to the chemical energy of food

- Chloroplasts are structurally similar to and likely evolved from photosynthetic bacteria (endosymbiotic theory)
- The structural organization of these cells allows for the chemical reactions of photosynthesis

Chloroplasts: The Sites of Photosynthesis in Plants

- Leaves are the major locations of photosynthesis
- Their green color is from chlorophyll, the green pigment within chloroplasts
- Light energy absorbed by chlorophyll drives the synthesis of organic molecules in the chloroplast
- CO₂ enters and O₂ exits the leaf through microscopic pores called stomata (stomates)

- Chloroplasts are found mainly in cells of the mesophyll, the interior tissue of the leaf
- A typical mesophyll cell has 30–40 chloroplasts
- The chlorophyll is in the membranes of thylakoids (connected sacs in the chloroplast); thylakoids may be stacked in columns called grana
- Chloroplasts also contain stroma, a dense fluid analogous to the mitochondrial matrix

Fig. 10-3

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fig. 10-3a

Fig. 10-3b

Tracking Atoms Through Photosynthesis: Scientific Inquiry

Photosynthesis can be summarized as the following equation:

$$6 \text{ CO}_2 + 12 \text{ H}_2\text{O} + \text{Light energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2 + 6 \text{ H}_2\text{O}$$

- The simplified equation:
- 6 CO₂ + 6 H₂O + Light energy → C₆H₁₂O₆ + 6 O₂
- Look familiar?

The Splitting of Water

 Chloroplasts split H₂O into hydrogen and oxygen, incorporating the electrons of hydrogen into sugar molecules

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Photosynthesis as a Redox Process

 Photosynthesis is a redox process in which H₂O is oxidized and CO₂ is reduced

The Two Stages of Photosynthesis: A Preview

- Photosynthesis consists of the light reactions (the photo part) and Calvin cycle (the synthesis part)
- The light reactions (in the thylakoids):
 - Split H₂O
 - Release O₂
 - Reduce NADP+ to NADPH (What is this carrying? To where? not ETC!)
 - Generate ATP from ADP by photophosphorylation

- The Calvin cycle (in the stroma) forms sugar from CO₂, using ATP and NADPH
- The Calvin cycle begins with carbon fixation, incorporating CO₂ into organic molecules

Concept 10.2: The light reactions convert solar energy to the chemical energy of ATP and NADPH

- Chloroplasts are solar-powered chemical factories
- Their thylakoids transform light energy into the chemical energy of ATP and NADPH

The Nature of Sunlight

- Light is a form of electromagnetic energy, also called electromagnetic radiation
- Like other electromagnetic energy, light travels in rhythmic waves
- Wavelength is the distance between crests of waves (peak to peak)
- Wavelength determines the type of electromagnetic energy

- The electromagnetic spectrum is the entire range of electromagnetic energy, or radiation
- Visible light consists of wavelengths (including those that drive photosynthesis) that produce colors we can see (ROY G BIV, really VIB G YOR!)
- Light also behaves as though it consists of discrete particles, called photons

Fig. 10-6

Photosynthetic Pigments: The Light Receptors

- Pigments are substances that absorb visible light
- Different pigments absorb different wavelengths
- Wavelengths that are not absorbed are reflected or transmitted (these are the colors that we see)
- Leaves appear green because chlorophyll reflects and transmits green light

Leaf Pigments Separated by Chromotography

- A spectrophotometer measures a pigment's ability to absorb various wavelengths
- This machine sends light through pigments and measures the fraction of light transmitted at each wavelength

TECHNIQUE

- An absorption spectrum is a graph plotting a pigment's light absorption versus wavelength
- The absorption spectrum of chlorophyll a suggests that violet-blue and red light work best for photosynthesis
- An action spectrum profiles the relative effectiveness of different wavelengths of radiation in driving a process

- Chlorophyll a is the main photosynthetic pigment
- Accessory pigments, such as chlorophyll b, broaden the spectrum used for photosynthesis
- Accessory pigments called carotenoids absorb excessive light that would damage chlorophyll

Excitation of Chlorophyll by Light

- When a pigment absorbs light, it goes from a ground state to an excited state, which is unstable
- When excited electrons fall back to the ground state, photons are given off, an afterglow called fluorescence
- If illuminated, an isolated solution of chlorophyll will fluoresce, giving off light and heat

(a) Excitation of isolated chlorophyll molecule

(b) Fluorescence

A Photosystem: A Reaction-Center Complex Associated with Light-Harvesting Complexes

- A photosystem consists of a reaction-center complex (a type of protein complex) surrounded by light-harvesting complexes
- The light-harvesting complexes (pigment molecules bound to proteins) funnel the energy of photons to the reaction center

- A primary electron acceptor in the reaction center accepts an excited electron from chlorophyll a
- Solar-powered transfer of an electron from a chlorophyll a molecule to the primary electron acceptor is the first step of the light reactions

- There are two types of photosystems in the thylakoid membrane
- Photosystem II (PS II) functions first (the numbers reflect order of discovery) and is best at absorbing a wavelength of 680 nm
- The reaction-center chlorophyll a of PS II is called P680

- Photosystem I (PS I) is best at absorbing a wavelength of 700 nm
- The reaction-center chlorophyll a of PS I is called P700

Linear Electron Flow

- During the light reactions, there are two possible routes for electron flow: cyclic and linear
- Linear electron flow, the primary pathway, involves both photosystems and produces ATP and NADPH using light energy

- A photon hits a pigment and its energy is passed among pigment molecules until it excites P680 (reaction center)
- An excited electron from P680 is transferred to the primary electron acceptor

- P680+ (P680 that is missing an electron) is a very strong oxidizing agent
- H₂O is split by enzymes, and the electrons are transferred from the hydrogen atoms to P680+, thus reducing it to P680
- O₂ is released as a by-product of this reaction

- Each electron "falls" down an electron transport chain from the primary electron acceptor of PS II to PS I
- Energy released by the fall drives the creation of a proton gradient across the thylakoid membrane
- Diffusion of H⁺ (protons) across the membrane drives ATP synthesis

- In PS I (like PS II), transferred light energy excites P700 (reaction center), which loses an electron to an electron acceptor
- P700+ (P700 that is missing an electron)
 accepts an electron passed down from PS II
 via the electron transport chain

- Each electron "falls" down an electron transport chain from the primary electron acceptor of PS I to the protein ferredoxin (Fd)
- The electrons are then transferred to NADP+ and reduce it to NADPH
- The electrons of NADPH are available for the reactions of the Calvin cycle

Fig. 10-14

Cyclic Electron Flow

- Cyclic electron flow uses only photosystem I and produces ATP, but not NADPH
- Cyclic electron flow generates surplus ATP, satisfying the higher demand in the Calvin cycle

- Some organisms such as purple sulfur bacteria have PS I but not PS II
- Cyclic electron flow is thought to have evolved before linear electron flow
- Cyclic electron flow may protect cells from light-induced damage

Light Causes Damage to Photosystems

- The absorption of light (photons) causes damage to photosystems especially PSII
- Damage leads to photoinhibition (reduction in photosysthesis)
- Normally photosystems are rapidly repaired by the cell
- All light intensities cause damage but damage increases with increasing intensity

Light Causes Damage to Photosystems

- Reactive Oxygen Species (ROS)
- Free radicals cause damage
- UV radiation contributes to damage

A Comparison of Chemiosmosis in Chloroplasts and Mitochondria

- Chloroplasts and mitochondria generate ATP by chemiosmosis, but use different sources of energy
- Mitochondria transfer chemical energy from food to ATP; chloroplasts transform light energy into the chemical energy of ATP
- Spatial organization of chemiosmosis differs between chloroplasts and mitochondria but also shows similarities

- In mitochondria, protons are pumped to the intermembrane space and drive ATP synthesis as they diffuse back into the mitochondrial matrix
- In chloroplasts, protons are pumped into the thylakoid space and drive ATP synthesis as they diffuse back into the stroma

- ATP and NADPH are produced on the side facing the stroma, where the Calvin cycle takes place
- In summary, light reactions generate ATP and increase the potential energy of electrons by moving them from H₂O to NADPH

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Concept 10.3: The Calvin cycle uses ATP and NADPH to convert CO₂ to sugar

- The Calvin cycle, like the citric acid cycle, regenerates its starting material after molecules enter and leave the cycle
- The cycle builds sugar from smaller molecules by using ATP and the reducing power of electrons carried by NADPH

- Carbon enters the cycle as CO₂ and leaves as a sugar named glyceraldehyde-3-phospate (G3P)
- For net synthesis of 1 G3P, the cycle must take place three times, fixing 3 molecules of CO₂
- The Calvin cycle has three phases:
 - Carbon fixation (catalyzed by rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase)
 - Reduction
 - Regeneration of the CO₂ acceptor (RuBP)

- Calvin Cycle Summary
- Steps
- The steps in the cycle are as follows:
- 1. Grab: A five-carbon carbon catcher catches one molecule of carbon dioxide and forms a six-carbon molecule.
- 2. Split: the enzyme RuBisCO (with the energy of ATP and NADPH molecules) breaks the sixcarbon molecule into two equal parts.

Calvin Cycle Summary

- 3. Leave: A trio of three carbons leave and become sugar. The other trio moves on to the next step.
- 4. Switch: Using ATP and NADPH, the three carbon molecule is changed into a five carbon molecule.
- 5. The cycle starts over again.

Calvin Cycle Summary

- The product
- The carbohydrate products of the Calvin cycle are three-carbon sugar phosphate molecules, or 'triose phosphates' (G3P). Each step of the cycle has its own enzyme which speeds up the reaction.

Concept 10.4: Alternative mechanisms of carbon fixation have evolved in hot, arid climates

- Dehydration is a problem for plants, sometimes requiring trade-offs with other metabolic processes, especially photosynthesis
- On hot, dry days, plants close stomata, which conserves H₂O but also limits photosynthesis
- The closing of stomata reduces access to CO₂ and causes O₂ to build up
- These conditions favor a seemingly wasteful process called photorespiration

Photorespiration: An Evolutionary Relic?

- In most plants (C₃ plants), initial fixation of CO₂, via rubisco, forms a three-carbon compound
- In photorespiration, rubisco adds O₂ instead of CO₂ in the Calvin cycle
- Photorespiration consumes O₂ and organic fuel and releases CO₂ without producing ATP or sugar

- Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the atmosphere had far less O₂ and more CO₂
- Photorespiration limits damaging products of light reactions that build up in the absence of the Calvin cycle
- In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle

C₄ Plants

- C₄ plants minimize the cost of photorespiration by incorporating CO₂ into four-carbon compounds in mesophyll cells
- This step requires the enzyme PEP carboxylase
- PEP carboxylase has a higher affinity for CO₂ than rubisco does; it can fix CO₂ even when CO₂ concentrations are low
- These four-carbon compounds are exported to bundle-sheath cells, where they release CO₂ that is then used in the Calvin cycle

CAM Plants

- Some plants, (including orchids, bromeliads, cacti, and succulents), use crassulacean acid metabolism (CAM) to fix carbon
- CAM plants open their stomata at night, incorporating CO₂ into organic acids
- Stomata close during the day, and CO₂ is released from organic acids and used in the Calvin cycle

Plants have Variety

- Most plants use C₃ metabolism.
- Some plants use only C₃ or C₄ or CAM.
- Some plants are flexible and can switch the type of metabolism depending on environmental conditions.

The Importance of Photosynthesis: A Review

- The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds
- Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells
- Plants store excess sugar as starch in structures such as roots, tubers, seeds, and fruits
- In addition to food production, photosynthesis produces the O₂ in our atmosphere

You should now be able to:

- 1. Describe the structure of a chloroplast
- 2. Describe the relationship between an action spectrum and an absorption spectrum
- 3. Trace the movement of electrons in linear electron flow
- 4. Trace the movement of electrons in cyclic electron flow

- Describe the similarities and differences between oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts
- Describe the role of ATP and NADPH in the Calvin cycle
- Describe the major consequences of photorespiration
- 8. Describe two important photosynthetic adaptations that minimize photorespiration