INTRODUCTION

System Concept

- 1. Skeletal muscles -- only organs in muscular system
- 2. Heart
 - -- Essentially a muscular organ -- unique cardiac muscle
 - -- But, part of cardiovascular system
- 3. Smooth muscles
 - -- Not in same conceptual category as skeletal or cardiac
 - -- Always considered a secondary tissue in diverse organs

Functions

- 1. Major
 - a. Movements
 - -- Most body movements
 - -- Exceptions
 - -- cilia -- e.g. tracheal lining epithelium
 - -- flagella -- sperm
 - -- amoeboid -- e.g. phagocytes
 - b. Prevention or limiting of movements
 - --Prevention -- e.g. posture maintenance
 - --Stabilization -- e.g. limiting joint movements
 - --Blocking an opening -- e.g. sphincters
- 2. Minor

Heat Production

-- Secondary importance

- -- Greatest contributor of body heat
 - -- Highest energy requirement
 - -- Skeletal muscle produces 50% total body ATP
 - -- Unique myoglobin
- -- Shivering -- only isolated example

Tissue Characteristics & Features

- 1. Contractility
 - -- All cells can contort & shrink
 - -- Muscle cells carry this to extreme -- unique
 - -- Cellular linearity reflects this
 - -- Highly organized intracellular components necessary

2. Conductivity

- -- All cells exhibit irritability -- respond to stimuli
- -- Muscle & nervous more highly developed
 - -- Very excitable
 - -- Respond with useful ionic changes at cell membrane
 - -- Conducted -- travels over membrane

Types of Muscle Tissue

- 1. Skeletal
 - -- Often termed striated -- not unique
 - -- Usually attach to various skeletal parts
 - -- Voluntary
 - -- Under absolute nervous control
 - -- Paralyzed if controlling nerves lost
- 2. Cardiac

- -- Also termed heart muscle
- -- Only found in heart
- -- Striated cells, as in skeletal
- -- Involuntary
 - -- Under nervous influence only -- action only modified
 - -- Can function independently of nerves
- 3. Smooth
 - -- Also termed visceral -- in viscera (internal organs)
 - -- Also termed smooth -- cells lack striations
 - -- Involuntary

GENERAL STRUCTURAL FEATURES

Skeletal Emphasis

Unless otherwise specified from now on only skeletal muscle will be considered

Concepts

- 1. Numbers
 - -- 600⁺ muscles in entire body
 - -- Not all unique
 - -- Right & left for all but a few
 - -- Some repeated -- e.g. intercostals
- 2. Volume
 - -- Women -- avg. 36% body mass
 - -- Men -- avg. 42% body mass
- 3. Variability -- permits functional diversity

- -- Size
- -- Shape
- -- Number of parts
- -- Attachment method or angle
- -- Power
- -- Speed
- -- Skeletal cell type variations

Gross Structure

- [A muscle as an organ]
- 1. Fibers
 - -- Special descriptive name for muscle cells
 - -- Linear & fiber-like
 - -- Parallel arrangement

2. Fasciculi

- -- Bundles of fibers
- -- Subdivisions of entire muscle
- -- Size variation
- 3. Connective tissues
 - a. Endomysium
 - -- Surrounds individual fibers
 - -- Delicate fibrous
 - -- Holds fibers in place & contains blood vessels
 - b. Perimysium
 - -- Surrounds & separates fasciculi
 - -- Fibrous, denser than endomysium
 - c. Epimysium
 - -- Covering of entire muscle -- sheathing

-- Dense irregularly arranged collagenous

- 4. Belly
 - -- Muscle portion containing fibers
 - -- Excludes tendons
 - -- Where contractile power developed
- 5. Tendon
 - -- For attachment of muscle ends
 - -- Continuation of epi-, peri- & endomysia
 - -- Important structural & functional integrity
 - -- Direct harnessing of forces by fibers' contraction
 - -- Receives force of contraction -- transmits to attachments
 - -- Technically not present in some muscles [details later]

6. Vascular supply

- -- Abundant
- -- Necessitated by extremely high cellular respiratory needs
- -- Other related special features
 - -- Myoglobin -- carries O2 -- similar to hemoglobin
 - -- Glycogen -- few other tissues store glucose

7. Nerve supply

- -- More extensive for voluntary muscles
- -- Contained within peri- & endomysia

8. Proprioceptor

- -- Receptor (sense organ)
- -- Relays information on contractile status to nervous system

Attachments

- 1. Locations
 - a. Bone
 - -- To periosteum
 - -- Majority of muscles
 - b. Cartilage
 - -- To perichondrium
 - -- e.g. pectoralis to costal cartilages

c. Skin

- -- To subcutaneous tissue
- -- e.g. orbicularis oculi
- d. Mucous membrane -- e.g. orbicularis oris
- e. Fascia
 - -- Actually, one muscle attaching to another
 - -- e.g. zygomaticus

2. Tendons

[Their shape reflects muscle belly]

-- Cord

- -- Round or oval in cross section
- -- e.g. Achilles tendon of gastrocnemius
- -- Flat ribbon -- e.g. rectus abdominis
- -- Aponeurosis
 - -- Very broad & flat, sheet-like
 - -- e.g. latissimus dorsi

-- Divided

- -- Multiple parts, split
- -- e.g. extensor digitorum

3. Non-tendon types

- -- Some muscles lack tendons technically
- -- Attach more or less directly
- -- Utilize collagenous fibers of epi-, peri- & endomysia
- -- e.g. intercostals

Shapes

- 1. Parallel
 - -- Muscle fibers parallel throughout length
 - -- Usually ribbon-like
 - -- e.g. sternohyoid

2. Fusiform

- -- Fibers essentially parallel in middle of muscle
- -- Come together at one or both ends
- -- e.g. biceps brachii

3. Convergent

- -- Fibers at one end quite spread apart
- -- Converge sharply at other end
- -- Power converges as well
- -- Muscle triangular
- -- e.g. trapezius

4. Pennate

- a. General
 - -- Fibers at oblique angle to muscle's long axis
 - -- Also at oblique angle to attachment structure
 - -- Resembles a feather(s) or a part
 - -- Develops much power with little shortening
- b. Unipennate
 - -- Resembles half of a feather
 - -- e.g. extensor digitorum

c. Bipennate

- -- Resembles an entire feather
- -- e.g. rectus femoris
- d. Multipennate
 - -- Resembles two or more feathers, parallel
 - -- Each portion has slightly different function
 - -- e.g. deltoid

5. Circular

- -- Also termed sphincter
- -- Fibers encircle a central opening
- -- Controls size of opening
- -- e.g. orbicularis oris

6. Spiral

- -- Muscle spirally wrapped around body part
- -- Twists part around
- -- e.g. pronator teres

7. Multiple (Divided)

--e.g. Serratus Anterior

Naming

- 1. Location
 - -- Intercostals -- between ribs
 - -- Pectorals -- in that region

2. Shape

Deltoid -- delta (triangle)

3. Size

Gluteus maximus & gluteus minumus

4. Fiber direction

- -- Rectus muscles run straight down body's long axis

5. Number of parts

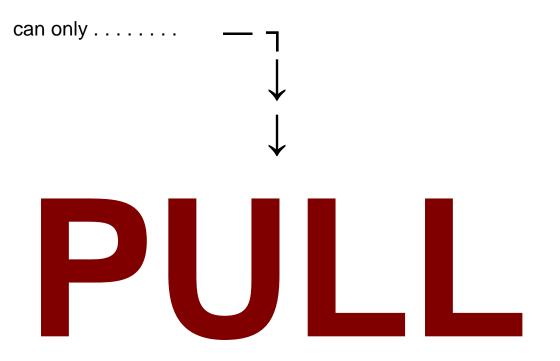
Triceps brachii -- three heads

6. Attachments

Sternocleidomastoid -- sternum to clavicle to mastoid process

- 7. Action
 - -- Adductor -- causes body part to move in

-- Levator -- lifts body part


8. Combination

Levator scapulae ventralis

GENERAL FUNCTIONAL FEATURES

Underlying Principle

In order to accomplish any of its particular functions, a muscle

... therefore, for complicated movements:

- -- More than one muscle required
- -- Each muscle has separate pulling role -- e.g. angle
- -- Different group combinations cycle for various needs
- -- Puppet analogy

[Note: basic concepts now--details later--Mechanics]

Parts -- Functional

1. Origin

- -- One of 2 functional ends of muscle
- -- More stable end of attachment -- more fixed

-- Relatively less moveable during contraction

2. Insertion

- -- Opposite functional end from origin
- -- Less stable end of attachment -- less fixed
- -- Relatively more moveable during contraction
- -- If movement function occurring, happens here

3. Reasons

- a. Origin
 - 1) Attached to more stable bone (or other structure)
 - 2) Joint design or relative location
 - 3) Typically more proximally oriented
 - 4) More pull from other muscles at this point

b. Insertion

- 1) Attached to more moveable bone
- 2) Joint design or relative location
- 3) Typically more distally oriented
- 4) Less pull from other muscles
- 4. Interchangeable roles [many, but not all muscles]
 - a. Concept
 - -- At different times, reversal of stability of 2 ends
 - -- Origin becomes less stable -- now called insertion
 - -- Insertion becomes more stable -- now called origin

b. Causes

- -- Basically, different conditions exist
- -- Typically, other muscles accomplish changes
 - -- less pull against previous origin

-- more pull against previous insertion

- -- Other cause -- different body position
- c. Example -- rectus abdominis
 - -- Hips & legs held tight -- head & upper torso move
 - -- Head & upper torso held tight -- hips & legs move

<u>Action</u>

- 1. Basics
 - a. Concept
 - -- Muscle contraction exerts pulling force -- tension
 - -- Influence on origin
 - -- tension more absorbed & resisted
 - -- little or no pulling force
 - -- Influence on insertion
 - -- tension much less resisted
 - -- maximum pulling force
 - b. Possible results
 - -- Isotonic
 - -- resistance at insertion overcome
 - -- insertion pulled towards origin
 - -- movement occurs
 - -- Isometric
 - -- resistance at insertion too great
 - -- insertion held tightly
 - -- no movement [explanation later]

- c. Role of bones -- act as levers
- d. Role of joints -- act as fulcrums (pivot points)
- e. Muscle positions
 - -- Relative positioning will be logical
 - -- No movement possible if directly over body part
 - -- Therefore, only insertion would cross joint(s)
 - -- Origin & belly -- in front of, behind, above or below
- f. Cycling in groups
 - -- Contracted muscle
 - -- pulls on its insertion
 - -- action performed
 - -- Relaxed muscle
 - -- has no tension
 - -- cannot push part at insertion
 - -- For opposite & complex movements
 - -- cycles of contraction & relaxation
 - -- different muscles involved
 - -- each pulls part in different direction
 - -- minimum group size is 2
- 2. Individual muscle actions
 - a. Agonist (prime mover)
 - -- Applied to muscle producing particular action
 - -- e.g. biceps brachii flexing forearm
 - -- origin scapula (2 heads/tendons)

-- insertion - radial tuberosity

- b. Antagonist
 - -- Muscle with potential to produce opposite action
 - -- Must be relaxed for agonist to produce action
 - -- e.g. triceps brachii can extend forearm
 - -- origin scapula & humerus (3 heads/tendons)
 - -- insertion olecranon process
- c. Interchangeable roles
 - -- Triceps brachii now contracts
 - -- it becomes agonist
 - -- extension of forearm
 - -- Biceps brachii
 - -- it now becomes antagonist
 - -- must be relaxed
 - -- gradual relaxation usually
- 3. Actions of more than one muscle
 - a. Action with no agonist(s) or antagonist(s)
 - [this will explain isometric contraction]
 - -- Concept
 - -- simultaneous contraction 2 or more muscles
 - -- former agonist(s) & antagonist(s)
 - -- neither relaxes
 - -- Result
 - -- insertion will not move

- -- held tightly in fixed position
- -- being pulled in opposite directions
- -- Example
 - -- holding weight out in hand
 - -- biceps brachii contracted
 - -- triceps brachii contracted
- b. Direct synergists
 - -- Cooperative agonists
 - -- One action being performed by 2 or more muscles
 - -- e.g. forearm flexion
 - -- biceps brachii contracts
 - -- brachialis contracts simultaneously
- c. Indirect synergists
 - -- Muscles which assist agonist(s)
 - -- Do not perform same action as agonist(s)
 - -- Not an antagonist
 - -- Perform different action
 - -- at another insertion point
 - -- typically control intermediate joint
 - -- isotonic or isometric
 - -- necessary for effective action
 - -- e.g. making a tight fist
 - -- flexor digitorum group co-agonists
 - -- extensor digitorum relaxes antagonist

-- wrist must be held tightly - isometric

- flexor carpi ulnaris contracts
- flexor carpi radialis contracts
- extensor carpi ulnaris contracts
- extensor carpi radialis contracts
- -- wrist holding not directly related to fingers

FUNCTIONAL MICROANATOMY

Fiber (Cell)

- 1. General
 - a. Shape
 - -- Elongated cylinder
 - -- Round in cross section
 - -- Ends taper slightly
 - b. Size
 - -- Diameter
 - -- 10 100 µm
 - -- some authorities dispute 100 $\mu m,$ say 40 μm
 - -- Length
 - -- 1 mm 30⁺ cm
 - -- authorities disagree greatly
 - -- runs length of muscle's belly
 - c. Multinucleated
 - -- Approximately 35 nuclei / mm of length
 - -- Thousands of nuclei in longer cells

- d. Cellular status
 - -- Some authorities dispute fiber being true cell
 - -- Considered as syncytium
 - -- multicellular mass
 - -- formed by fusion of embryonic cells
 - -- separate cell membranes lost

2. Terminology

- a. General
 - -- Special terms for cell structures/organelles
 - -- Jargon from intense study -- not different
- b. Sarcolemma = cell (plasma) membrane
- c. Sarcoplasm = cytoplasm
- d. Sarcosomes = mitochondria
- e. Sarcoplasmic reticulum = endoplasmic reticulum
 - -- Extremely elaborate
 - -- Highly organized

3. Striations

- a. Appearance / effect
 - -- Alternate dark & light stripes
 - -- Subdivide cell -- apparent partitions

b. Cause

- -- Fibrils
 - -- intracellular linear structures
 - -- composed of smaller rod-like filaments

- -- Creation of striations
 - -- highly orderly filament arrangement
 - -- repeats throughout cell's thickness

Fibrils (Myofibrils)

- 1. General
 - a. Volume
 - -- Compose 80% of cell
 - -- Remaining 20% in intervening spaces
 - -- sarcoplasm
 - -- nuclei
 - -- all other organelles

b. Appearance

- -- Resemble miniature of entire cell
- -- Have same pattern of striations
- -- Run length of cell
- c. Alignment
 - -- Perfectly parallel to each other
 - -- Striations precisely aligned for all fibrils
 - -- Produces illusion that entire cell striated

d. Numbers

- -- Hundreds to thousands per cell
- -- Varies with cell's diameter

e. Size

- -- Diameter -- 1 2 µm
- -- Length -- just as long as cell

f. Composition

- -- Primarily of rod-like filaments
- -- 2 types
 - -- thick
 - -- thin
- -- Other secondary components [details later]

2. Thick filaments

- a. Shape & size
 - -- Rods
 - -- Diameter -- 150 A
 - -- Length -- 1.5 µm
- b. A-band
 - -- Anisotropic -- not clear; blocks light; dark
 - -- Cause
 - -- perfect alignment of thick filament groups
 - -- repeat along fibril length
 - -- in 1 µm thick fibril, 450 filaments / group
- c. M-line
 - -- Mittlescheibe = "middle of the disks"
 - -- Appears as very thin dark line middle of A-band

- -- Cause
 - -- attachment point for thick filament groups
 - -- holds them in position

3. Thin filaments

- a. Shape & size
 - -- Thinner, smaller rods
 - -- Diameter -- 60 A
 - -- Length -- 1 µm

b. I-band

- -- Isotropic -- clear; permits light to pass through
- -- Cause
 - -- perfect alignment of thin filament groups
 - -- repeat at identical intervals along fibril
 - -- in 1 µm thick fibril, 450 filaments / group
 - -- alternate with thick filament groups
 - -- partly overlap with thick filaments

c. Z-line

- -- Zwichenscheibe -- "between the disks"
- -- Cause
 - -- attachment point for thin filament groups
 - -- one group on either side
 - -- holds them in position
- -- Marks boundary for sarcomere [details later]

4. Filament overlap

Produces H-zone

- -- Hell or heller -- "bright"
- -- Appears as lighter central streak in middle of A-band
- -- Cause
 - -- where thin filaments do not overlap thick
 - -- contains only thick filaments
 - -- group of thins overlap on either side
- 5. Filament distribution
 - -- Evenly distributed
 - -- Precise pattern (arrangement) of thicks & thins
 - -- Reflects important functional relationship
 - -- Evident in fibril cross section, where overlap occurs
 - -- Any 1 thick as reference point
 - -- surrounded by 6 thins
 - -- form equal sided hexagon
 - -- thick in exact center
 - -- Any 1 thin as reference point
 - -- surrounded by 3 thicks
 - -- form equilateral triangle
 - -- thin in exact center
 - -- Thick filament centers exactly 450 A apart
 - -- Thin filament centers exactly 260 A apart

6. Filament numbers

Based on cell 100 $\mu m \; x$ 1 cm with 1 μm thick fibrils

- a. Thick filaments = 16.2 billion in entire cell
 - -- 450 thicks / group
 - -- 4500 groups / fibril
 - -- 8,000 fibrils in entire cell

b. Thin filaments = 32.4 billion in entire cell

[recall -- a thin group is on either side of thick]

Sarcomere

- 1. Concept
 - -- Portion of fibril length from any one Z-line to next Z-line
 - -- Included components
 - a. One group of thick filaments
 - -- A-band
 - -- H-zone
 - -- M-line
 - b. Two groups of thin filaments -- 2 half I-bands
 - -- Fibril = series of sarcomeres attached end to end

2. Importance

-- Basic functional unit of a muscle cell

[contrast with <u>motor unit</u> below]

- -- Contractile phenomena occur in sarcomeres
 - -- Thus, each sarcomere shortens simultaneously
 - -- Causes fibrils (so entire cell) to contract & pull

Muscle Remodeling

[Example of homeostasis, as in bone]

- 1. Concept
 - -- Atrophy or hypertrophy
 - -- Atrophy = muscle wasting
 - -- Hypertrophy = muscle increase
 - -- Strength will decrease or increase
 - -- Long or short term
 - -- Time -- maximum hypertrophy may take 6-10 weeks
- 2. Causes
 - -- Decreased use
 - -- Inactivity
 - -- Immobility
 - -- Increased use
- 3. Muscle cell changes
 - [all can be either decreased or increased]
 - a. Diameter -- change in number of fibrils splitting (like DNA replication)
 - b. Length
 - -- Change in number of sarcomeres
 - -- Possible to occur at rate of several/minute
 - --Stimulated by stretching
 - c. Fiber type -- can be modified to a slight extent [explained later]
 - d. Enzyme systems
 - -- will affect ATP production capability

--e.g. glycolytic

4. Whole muscle changes

[all can be either decreased or increased]

- a. Connective tissues
 - -- Endo-, peri- & epimysia
 - -- High correlation between this & muscle strength
- b. Vascularity -- correlated with nutritional/gas needs
- c. Diameter -- due to 3 factors:
 - -- Collective cell diameter changes
 - -- Connective tissue changes
 - -- Vascularity changes
- d. Length -- due to cellular length changes

Channel Systems

- 1. T-system
 - a. Concept
 - -- This stands for transverse
 - -- Series of intercellular hollow tubules -- sarcotubules

b. Arrangement

- -- Positioned at regular intervals along cell's length
- -- Run perpendicular (transverse) to long axis
- -- Continuous with sarcolemma
- -- All T-tubules in cell interconnected
- c. Relationship with fibrils
 - -- Extend into cell interior
 - -- Wrap around fibrils
 - -- One T-tubule forms loop around each fibril

- d. Relationship with sarcomere
 - -- Two loops per sarcomere
 - -- Located at either outer edge of A-band

2. Sarcoplasmic reticulum

- a. Concept
 - -- System of hollow, interconnected channels
 - -- Similar to, but separate from, T-system
- b. Longitudinal division
 - -- Highly interconnected, net-like tubes
 - -- Run in cell's long axis
 - -- Between & wrapped around fibrils
 - -- Repeating pattern -- corresponds with sarcomeres
- c. Terminal cisternae
 - -- Continuous with longitudinal
 - -- Wrapped around fibrils in pairs
 - -- one on either side of each T-tubule
 - -- thicker than T-tubules
 - -- no direct interconnection
- d. Triad
 - -- Denotes relationship between T-tubule & cisternae
 - -- Important functional site [details later]

Nerve Supply

- 1. Myoneural (neuromuscular) junction
 - a. Motor nerve
 - -- Peripheral part of nervous system

- -- Carries controlling impulses
- -- Motor implies movement
- b. Nerve fiber (axon)
 - -- One portion (strand) from motor nerve
 - -- Extension from body of one nerve cell (neuron)
- c. Axon endings
 - -- String-like extensions
 - -- Several to many per axon
 - -- Each goes to one muscle fiber (cell)
- d. Motor end plate
 - -- Modified portion of sarcolemma
 - -- No physical contact with ending -- 100 A gap
 - -- Membrane receptor proteins
 - -- Receives chemical signal from axon ending

2. Motor unit

- a. Components
 - -- One axon & all of its endings
 - -- All muscle cells controlled (via motor end plates)
- b. Size variations
 - -- Number of endings/motor end plates
 - -- From 1 2,000
- c. Arrangement
 - -- Probably only one ending per muscle fiber
 - -- Fibers of one unit usually not in same fasciculus
 - -- scattered throughout muscle
 - -- important for producing widespread effect

Basic functional unit of whole muscle

MUSCLE PROTEINS

<u>General</u>

1. Extent

Muscle cells are 80% protein by volume

- 2. Myofibrillar
 - -- Group of 4 main proteins
 - -- Compose thick & thin filaments
 - -- Not unique to muscle tissue -- arrangement is unique
 - -- Comprise 60% of total cellular proteins
 - -- Other 40% -- Misc. membrane proteins & enzymes
 - -- Misc. membrane proteins & enzymes
 - -- Same arrangement & functions as other tissues
- 3. Structural review [Drawings only]

Myosin

- 1. Molecular structure
 - a. Size -- molecular weight 500,000 (quite large)
 - b. Shape
 - -- Two identical polypeptide subunits
 - -- Tails (2) -- intertwined, more linear
 - -- Heads (2) -- globular, elongated, right angle to tails

- c. Actin binding site
 - -- Special chemically active site on each head
 - -- Will bond with actin molecules [details later]
- d. ATPase
 - -- Another separate active site on each head
 - -- Enzymatic -- splits ATP to ADP + PO₄ [details later]

2. Arrangement

- a. Location
 - -- Compose thick filaments
 - -- About 200 myosin molecules per filament
- b. Appearance
 - -- Tails -- parallel, bind molecules
 - -- Heads -- project outwards
 - -- Two equal size groups
 - -- tails towards each other
 - -- heads project from opposite ends
 - -- only tails in mid-filament

<u>Actin</u>

- 1. Molecular structure
 - a. Size -- 60,000
 - b. Shape -- globular, spherical

2. Arrangement

- a. Location -- framework of thin filaments
 - -- Framework of thin filaments
 - -- 300-400 actin molecules per filament
- b. Appearance
 - -- Two strings (filaments) of actin molecules

- -- Twisted together
- -- Very precise -- 7 double actins per twist

Tropomyosin

1. Molecular structure

- a. Size -- 70,000
- b. Shape
 - -- Basically linear, but asymmetrical
 - -- Two helically intertwined polypeptide subunits

2. Arrangement

- a. Location -- part of thin filaments
- b. Appearance
 - -- One tropomyosin bonds with 7 actins
 - -- Corresponds to one twist of one actin filament
 - -- Conforms to shape of twist
 - -- Repeated along both actin filaments

<u>Troponin</u>

- 1. Molecular structure
 - a. Size -- 80,000
 - b. Shape
 - -- Globular
 - -- 3 non-identical spherical subunits
- 2. Arrangement
 - a. Location -- part of thin filaments

- b. Appearance
 - -- One troponin bonds at end of each tropomyosin
 - -- Subunit relations [details later]
 - -- largest binds entire molecule to tropomyosin
 - -- middle freely binds with Ca
 - -- third alters troponin/tropomyosin bond

<u>Others</u>

- 1. Alpha-actinin
 - -- Located in Z-line
 - -- Probably aligns & holds thin filaments in place
 - -- May help transmit contractile force between sarcomeres

b. M-protein

- -- Located in M-line
- -- Probably aligns & holds thick filaments in place

Functional Correlations

- 1. Actomyosin
 - a. Formation
 - -- Actin & myosin naturally bond
 - -- Form viscous substance -- long, fiber-like strands
 - -- Can even occur in non-living situation
 - b. ATP, Ca & Mg
 - -- Energy source
 - -- Catalysts
 - c. Shrinkage
 - -- Actomyosin strands contract

- -- Become shorter & thicker
- d. Tension development
 - -- If strands arranged linearly & ends attached
 - -- Power (tension) could cause pull
- e. Significance
 - -- 2 main proteins have inherent contractile ability
 - -- Not dependent on being part of muscle cells
 - -- Good example of body's design logic
- 2. Cross-bridge (head) linkage
 - -- Each myosin head binds with one actin
 - -- At various times different actins bind with any one head

[explained later -- sliding filament cycling]

- 3. Tropomyosin & troponin
 - -- Roles involve modification of actin/myosin relationship
 - -- Primarily determine when contraction can occur [explained later -- sliding filament initiation]

CONTRACTION -- MOLECULAR AND CELLULAR

Sliding Filament Process

- 1. Concept
 - -- Thin filaments of each sarcomere slide during contraction
 - -- Increases overlap with thick filaments
 - -- Each of 2 sets of thins sliding towards each other
 - -- Caused by pull of thick filaments

2. Force

- a. Cross-bridges (myosin heads)
 - -- Develop energy for pulling thin filaments
 - -- Recall binding to actins
- b. Swiveling
 - -- Heads undergo movement
 - -- Change in position
- c. Pulling
 - -- Swiveling produces pulling action
 - -- Slides thin filaments towards middle of sarcomere
- 3. Cycling of cross-bridges
 - a. General
 - -- Each head undergoes repeating cycle
 - -- About 180,000 heads per sarcomere
 - -- Recall
 - -- each thick contacts 6 thins
 - -- each thin contacted by 3 thicks
 - b. Attachment
 - -- Head binds with one actin molecule
 - -- Goes into active configuration [details later]
 - c. Swiveling
 - -- Head undergoes movement
 - -- Sort of power stroke
 - -- Exerts its share of pull on thin

- d. Detachment -- head breaks loose from this actin
- e. Reattachment
 - -- Head binds to different actin
 - -- Farther down thin filament -- towards Z-line

f. Asynchronous

- -- All heads of sarcomere not synchronized
- -- At any moment -- different heads in all cycle stages
- -- Produces smooth & constant pulling of thins
- -- Rope climbing analogy

4. Results

- a. Filament overlap increases
- b. Sarcomere shortening
 - -- Decreased to 60% (max.) of relaxed length
 - -- In each of several thousand per fibril
 - -- In each of hundreds thousands fibrils per cell
 - -- Sarcomere attachment causes total shortening
 - -- Actual contraction of cell -- source of tension
- c. Changes in sarcomere banding
 - -- Z-lines closer together
 - -- A-bands same length
 - -- H-zone less wide
 - -- I-bands more narrow -- could disappear

d. Limiting factors

- -- Thin filaments never touch M-line
- -- Z-lines contact thick filament ends

- -- Prevents more filament sliding
- 5. Energy coupling
 - a. General -- source & means of cycling steps
 - b. ATP-binding -- ATP molecule bonds to myosin head
 - c. ATPase
 - -- Recall this myosin head active site
 - -- Catalyzes splitting ATP to ADP + PO₄
 - d. Energized head -- used for swiveling & pulling
 - e. Detachment
 - -- Requires another ATP molecule
 - -- Split by ATPase
 - -- Energy forces head to break away from actin
 - f. Recycling
 - -- Above (b d) continues
 - -- Limiting factors will stop recycling
 - -- Z-lines hitting thick filament ends
 - -- ATP running out
 - g. Calcium dependency
 - -- Cycling only occurs if Ca level sufficient
 - -- [details below]

Initiation

- 1. Excitation
 - a. Nerve fiber stimulation
 - 1) Nervous impulse conducted down axon endings

- 2) Transmitter release
 - -- chemical substance from ending tip
 - -- diffuses across gap to motor end plate
- 3) Motor end plate
 - -- receptors affected by transmitter
 - -- depolarization of membrane
- b. Conduction of depolarization
 - 1) Over sarcolemma
 - -- from motor end plate depolarization
 - -- depolarization wave spreads out
 - 2) Along T-tubules
 - -- conducted wave from sarcolemma
 - -- continues into cell interior
 - 3) Terminal cisternae
 - -- wave reaches triads
 - -- stimulation of cisternae
- 2. Excitation-contraction coupling
 - a. Calcium released from cisternae
 - -- Stimulation made membrane more permeable
 - -- Diffuses out from more concentrated interior
 - b. Troponin binding
 - -- Ca level now elevated around filaments
 - -- Troponin subunit attracts Ca
 - c. Troponin altered -- shape change from Ca addition
 - d. Tropomyosin alteration
 - -- Troponin causes cooperative shape change
 - -- Tropomyosin slides over its 7 actins

- e. Effect on myosin heads
 - -- Special area on actins now exposed
 - -- Myosin heads move over into this site
 - -- Heads can only swivel & pull here

3. Filament sliding

- -- Only now can this occur
- [cycling & sliding covered previously]

Relaxation

- 1. Calcium influence
 - a. Pumped back into cisternae
 - -- Ca forced away from troponin
 - -- Actively transported into longitudinal reticulum
 - -- Returned to interconnected terminal cisternae b. Myosin head inhibition
 - -- Troponin returns to original shape
 - -- Reciprocal change in attached tropomyosin
 - -- Active sites on actins again blocked

2. Muscle relaxation

- a. Filament sliding stopped
 - -- Heads can no longer attach at active sites
 - -- Halts cycling & pulling
- b. Lengthening
 - -- Contractile power (tension) removed
 - -- Filaments can be pulled back out
 - -- Lengthens sarcomeres/fibrils/fibers

- c. Elastic elements
 - -- Filaments can only actively slide together
 - -- Lengthening (relaxation) caused by other parts
 - -- These are elastic elements [details later]
 - -- Were compressed during contraction by tension
 - -- This stored energy used to pull filaments out
 - -- By association entire muscle back to resting length