INTRODUCTION

System Concept

- 1. Central nervous system (CNS)
 - a. Significance
 - -- Not central in location
 - -- Central in importance -- controls entire system
 - b. Organs
 - -- Brain
 - -- highest level of control
 - -- coordinates entire system
 - -- Spinal cord
 - -- can operate independently
 - -- all actions influenced by brain

2. Peripheral nervous system (PNS)

- a. Significance
 - -- Peripheral in location -- extends from central
 - -- Peripheral in importance -- cannot work alone
- b. Organs -- all called nerves
- c. Divisions
 - (1) Functional
 - (a) Somatic -- mainly controls skeletal muscles
 - (b) Visceral (autonomic)
 - -- controls involuntary muscles
 - -- controls glands
 - -- CNS component as well [details later]

Page 2

- (2) Structural
 - (a) Spinal
 - -- Spinal Cord
 - -- 31 pairs
 - (b) Cranial
 - -- Brain
 - -- 12 pairs
- 3. Functional divisions
 - a. General
 - -- Different approach than structural
 - -- Includes both CNS & PNS
 - b. Sensory
 - -- Concerned with receptors (sense organs)
 - -- Incoming phenomena -- receiving information
 - c. Motor
 - -- Concerned with muscles & glands -- called effectors
 - -- Outgoing phenomena -- effecting an action

Functions

- 1. General
 - a. System deals with information
 - -- Transmitting -- most basic
 - -- Receiving -- sensory
 - -- Storage -- memory
 - -- Processing -- associating varied info
 - -- Responding -- motor

- b. Purposes
 - -- Integration -- interrelating all body parts
 - -- Coordination -- purposeful interrelation
- c. Other integrating/coordinating systems
 - -- Endocrine -- close associations with nervous
 - -- Cardiovascular -- physical, not functional

2. Most basic function

- -- Conduction of nervous impulses
- -- Only means for all other specific functions

3. More specific functions

- a. Stimulation (excitation) -- to start or increase
- b. Inhibition -- to stop or decrease
- c. Reception
 - -- Via receptors (sense organs)
 - -- Gives awareness of environment
- d. Secretion
 - -- Hormone-like (overlaps endocrine)-very few nerve cells do this
 - -- For chemical communication—transmitters—all nerve cells

NERVOUS TISSUE

Basic Characteristics

- 1. Irritability
 - -- Best response to environmental stimuli
 - Results in cellular membrane alterations
 - Utilized in performing functions

- -- Muscle tissue responds somewhat less
- -- Neuroepithelial tissue is less responsive
- -- All other tissues only slightly to non-responsive
- 2. Conductivity
 - -- Logical outcome of extreme irritability
 - -- Movement (conduction) of membrane alterations
 - -- Constitutes actual nervous impulse

Neurons

- 1. Importance
 - a. Basic unit

All system primary functions performed by these cells

b. Arrangement

-- All neurons interconnected

- -- Directly or indirectly
- -- Necessary to integrate & coordinate whole body
- -- Permits information transmission throughout body

2. Structure [mostly covered in lab]

- a. Cell body (soma)
 - -- Can be 150⁺ µm diameter
 - -- Contains nucleus, most cytoplasm & organelles

b. Dendrites

- -- Smaller projections from body
- -- Most often more than one
- -- Tree-like branching -- max. thousands small tips

- c. Axon (fiber)
 - -- Largest projection from body -- up to 1 M. long
 - -- Collateral branches -- few, right angle
 - -- Endings (telodendria) -- variable number
 - -- Usually special coverings [details later]

3. Functional parts

- a. Dendrites
 - -- Receive incoming information -- some exceptions
 - -- Via axon endings of other neurons
 - -- Can receive up to several hundred thousand endings
- b. Axon
 - -- Endings transmit outgoing info -- some exceptions
 - -- Endings contact other neurons
 - -- Above endings up to soma -- can receive other endings

c. Soma

- -- Metabolic control of rest of cell
- -- Membrane receives endings from other neurons
- 4. Coverings -- axons only
 - a. Schwann sheathing (neurolemma)
 - -- PNS only
 - -- Highly flattened Schwann cell
 - -- Wraps around axon & itself several times
 - -- One Schwann cell covers only part of axon length
 - -- Nodes (of Ranvier) -- gaps between adjacent cells
 - -- Exception -- some wrap around several axons

- b. Oligodendroglial sheathing
 - -- CNS only
 - -- Identical wrapping effect on axon
 - -- One cell has multiple flattened projections
 - -- Each projection wraps around different spot on axon
- c. Myelin sheathing (medullation)
 - -- Myelin = lipids + glycolipids + glycoproteins
 - -- Secreted by Schwann or oligodendroglial cells
 - -- Part of axon's covering as well
 - -- Can be absent -- not produced by all sheathing cells

5. Types

- a. Structural classification
 - 1) Unipolar
 - -- single projection from soma
 - -- splits into two branches
 - -- functional axon & dendrite
 - -- e.g. dorsal root ganglion
 - 2) Bipolar
 - -- single dendrite from soma -- usually unbranched
 - -- one axon from soma
 - -- e.g. rod from retina -- neuroepithelial
 - 3) Multipolar
 - -- one axon from soma
 - -- more than one dendrite from soma
 - -- broad category, due to varying dendrites
 - -- most neurons in this category

- b. Functional classification
 - 1) Sensory (afferent)
 - -- form pathways from receptors (sense organs)
 - -- dendrites contact receptor--axon away to another neuron
 - -- dendrites towards receptor--axon away
 - -- dendrites in PNS--axon into CNS
 - -- dendrites lower in CNS--axon higher in CNS
 - 2) Motor (efferent)
 - -- form pathways to effectors (muscles and glands)
 - -- dendrites in higher CNS--axon goes lower in CNS
 - -- dendrites in CNS--axon into PNS
 - -- dendrites towards CNS--axon towards effector
 - -- dendrites towards CNS--axon contacts effector
 - 3) Association (intermediate; interneuron)
 - -- completely within CNS
 - -- most numerous
 - -- basic resident neurons
 - -- join sensory with motor

6. Arrangements

- a. White matter
 - -- Mostly medullated (myelinated) axons
 - -- PNS -- forms nerves
 - -- CNS -- forms tracts (nerve equivalent)
 - -- Brain -- forms general widespread white matter

- b. Gray matter
 - -- Mostly somas & dendrites
 - -- PNS -- forms ganglia
 - -- CNS -- forms nuclei & diffuse gray networks
 - -- Brain -- forms cerebral & cerebellar cortex

Non-nervous Auxiliary Cells

- 1. PNS
 - a. Schwann cells [already covered]
 - b. Satellite (capsule) cells
 - -- Only present in ganglia
 - -- Form coverings around neuron bodies
- 2. CNS
 - a. Ependymal cells
 - -- Line brain ventricles & spinal cord's central canal
 - -- Covers choroid plexuses which project into ventricles
 - -- Secrete cerebrospinal fluid
 - b. Oligodendroglial cells
 - -- [already covered]
 - -- Reason that CNS neurons cannot regenerate -- ?
 - c. Astroglial cells (astrocytes)
 - -- Largest & most numerous glial cells
 - -- Numerous projections from body of cell
 - -- Attach to neurons -- for physical support
 - -- Attach to blood vessels -- blood-brain barrier
 - -- Attach to other structures -- e.g. oligodendroglia
 - d. Microglial cells
 - -- Smallest glial cells

- -- Phagocytic -- protective
- -- Connective tissue origin -- most likely

NERVOUS IMPULSE

Importance

All functions accomplished by impulses

This is the <u>only</u> way in which neurons operate

Basic Functional Concepts

- 1. Membrane ionic behavior
 - a. Relevance
 - -- Recall -- irritability leads to membrane changes
 - -- Changes conducted -- this is impulse
 - -- Caused by ionic changes called potentials
 - b. Review of ionic concepts
 - -- Ion = electrically charged particle (+ or -)
 - -- Many different ions in cells & ECF
 - -- Constantly moving & changing locations
 - -- Move both into & out of cells
 - c. Passive membrane transport concepts
 - -- These mechanisms control some ionic entry & exit
 - -- General
 - -- ions follow concentration gradient

- -- more net movement from greater to lesser
- -- must pass through specific diffusion channels
- -- Diffusion channels
 - -- specialized membrane proteins
 - -- passageway (hole) through molecule
 - -- various kinds, each handling specific ion(s)
- -- Ungated (free or open) channels
 - -- always permits its ion(s) to pass through
 - -- however, only diffuses if concentration gradient exists
- -- Gated (restricted) channels
 - -- its ion(s) may or may not be permitted to pass
 - -- can close down passageway completely
 - -- can open passageway variable amounts
 - -- controlling stimulus causes opening/closing
- d. Active membrane transport concepts
 - -- This mechanism can control same ions as passive
 - -- General
 - -- ions forced to move against gradient
 - -- more net movement from lesser to greater
 - -- must pass through transport pump
 - -- Active transport pumps
 - -- specialized membrane proteins
 - -- different from diffusion channels
 - -- expend energy from ATP to force ions through

- -- lons handled
 - -- some only transport one specific ion (e.g. Cl[#])
 - -- others handle more than one (e.g. Na/K)

2. Electrical potential

- a. Basic concept
 - -- Potential for electrical current (energy flow)
 - -- Due to imbalance of charges between two areas
 - -- Relative -- one area being compared with another
 - -- Only realized when areas joined by conductor
 - -- Can be detected with voltage measuring device
 - -- e.g. electrical energy stored in battery
- b. Equal ionic distribution (balance)
 - -- Ionic movement into & out of cell balanced
 - -- particular ions pass through (in or out)
 - -- equal number of same kind pass other way
 - -- Mechanism
 - -- initial movement usually involves diffusion
 - -- active transport used for counter-balancing
 - -- Importance
 - -- movements into & out of cell unavoidable
 - -- massive diffusion destabilizes membrane
 - -- maintains dynamic ionic distribution
 - -- Not the same as concentration equilibrium
 - -- few ions in equilibrium between outside/inside
 - -- this maintains needed concentration differences

- -- This is the usual, desirable situation in most cells
- b. Unequal distribution
 - -- Imbalanced ionic movements into & out of cell
 - -- particular ions pass through (in or out)
 - -- fewer numbers of same kind pass other way
 - -- Mechanism
 - -- massive diffusion through ungated channels
 - -- pump inadequate to counter-balance
 - -- termed leaky membrane
 - -- Importance
 - -- would destabilize & harm most cells
 - -- nerve, muscle & neuroepithelial cells survive
 - -- fundamental principle which permits irritability
- c. Membrane application of electrical potentials
 - -- Equal distribution
 - -- ionic balance creates no potential
 - -- charged particles relatively balanced
 - -- note this is a <u>dynamic</u> concept
 - -- voltmeter would read "0"
 - -- Unequal distribution
 - -- establishes potential electrical energy
 - -- due to net ionic gain in or out of cell
 - -- not electric current, only a potential
 - -- voltmeter would register "< or > 0"

- -- Polarity
 - -- potential creates + & polarized areas
 - -- orientation depends on ion & direction
 - -- quantification depends on voltmeter hookup

3. lons involved

- a. Sodium (Na⁺)
 - -- 10-20 times more concentrated in ECF than cytoplasm
 - -- Membrane has gated diffusion channels
 - -- Membrane has active transport pump
- b. Chloride (Cl[#])
 - -- 10-12 times more concentrated in ECF than cytoplasm
 - -- Membrane has gated diffusion channels
 - -- Membrane has weak active transport pump
- c. Potassium (K⁺)
 - -- 40-50 times more concentrated in cytoplasm than ECF
 - -- Membrane has ungated diffusion channels
 - -- Membrane has gated diffusion channels, also
 - -- Membrane has active transport pump -- shared with Na⁺

d. Others

- -- Not insignificant, but secondary to above 3
- -- Intracellular anions
 - -- variable impermeable organics
 - -- e.g. proteins
 - -- create important internal negativity
- -- Calcium (Ca⁺⁺)
 - -- more concentrated in ECF

- -- stabilizes membrane for Na⁺
- -- Na permeability inverse to Ca⁺⁺ concentration

Resting Potential

1. Importance

- -- Establishes basic membrane conditions
 - -- No nervous impulse in existence
 - -- No related conditions which could lead to impulse
- -- Like a reference point
 - -- Alteration establishes conditions for impulse
 - -- Restoration causes impulse to disappear
 - -- Variant change can make impulse extremely unlikely

2. Cause

- a. Potassium imbalance
 - -- Leaky membrane -- ungated (always open) channels
 - -- Extremely steep gradient causes much diffusion out
 - -- Pump not efficient enough to counteract all leakage
 - -- Actual number of ions
 - -- net loss rate 7 million
 - -- insignificant (total in cell 2 x 10¹¹)
 - -- Polarity
 - -- inside more negative (has lost positive K⁺)
 - -- ECF more positive (has gained positive K⁺)
- b. Role of sodium
 - -- Equally distributed
 - -- Equal inward diffusion & outward active transport

- -- Important so as not to interfere with K⁺
- -- Steep concentration gradient has another role [later]
- c. Role of chloride
 - -- Equally distributed
 - -- Inward diffusion equaled by 2 factors
 - -- greatly repulsed by cytoplasmic negativity
 - -- weak active transport outward

3. Amount

- a. Quantification introduction
 - -- Voltmeter leads -- traditional hookup
 - -- negative to ECF
 - -- positive to cytoplasm
 - -- Thus, cytoplasm measured relative to ECF
- b. Resting potential reading
 - -- #70 mV
 - -- Caused only by K imbalance
 - -- "#" reflects voltmeter hookup
 - -- inner reference point has lost positive K⁺
 - -- makes it now less positive (i.e. more negative)
 - -- reversal of hookup would produce "+" reading
 - -- "70" reflects amount of net K loss to ECF
 - -- "mV" reflects small electric current generated
 - -- Different neurons may have higher or lower reading

Depolarization

1. Importance

- -- Necessary to reverse resting polarity
- -- Only under an altered polarity can impulse be generated
- -- Amount of depolarization variable but critical

2. Cause

- a. Stimulus
 - -- Neuron membrane must be altered
 - -- Affected by some form of energy
 - -- chemical (most often)
 - -- mechanical
 - -- thermal
 - -- radiant
 - -- electrical (under experimental conditions)
- b. Membrane effect
 - -- Sodium gates opened wider -- channel protein altered
 - -- Na⁺ diffusion increased
 - -- wider passages through membrane
 - -- follows steep concentration gradient
- c. Results
 - -- Reversal of resting polarity
 - -- inside suddenly gains great number + ions
 - -- outside suddenly loses + charges (more negative)
 - -- Cannot be counteracted
 - -- Na⁺ pump can work no faster

-- resting K⁺ effects overwhelmed—but does <u>**not**</u> stop inward net gain

d. Time -- lasts about 200 nsec (0.2 msec)

3. Amount

- -- >#70 mV (e.g. # 65 mV)
- -- Variable
 - -- Varies with amount of stimulus
 - -- Due to Na^+ gates opening proportionally

Repolarization

- 1. Importance
 - -- Depolarization effects only needed for short time
 - -- Necessary to restore resting potential for next depolarization

2. Causes

- a. Sodium
 - -- Diffusion channel gates close
 - -- Occurs automatically at right time
 - -- Now back to resting position
 - -- Necessary to prevent further depolarization
- b. Potassium
 - -- Gated diffusion channels open
 - -- Occurs automatically as sodium gates close
 - -- Even more K⁺ diffuses out than during resting
 - -- Reverses depolarization from inward Na⁺ diffusion
 - -- Gates close when resting reached

Page 18

- -- Ungated channel leakage again maintains resting
- c. Why is K, & not Na, used to restore resting potential ?
 - -- Active transport would be required
 - -- K⁺ diffuses very freely
- c. Time -- lasts about 500 nsec (0.5 msec)

3. Amount

- -- From >#70 mV back to #70 mV (e.g. #65 to #70 mV)
- -- Variable -- depends on exact amount of depolarization

Action Potential

1. Importance

Absolutely necessary for nervous impulse generation

2. Cause

a. Concept

- -- It is an extra strong depolarization
- -- It only follows a threshold depolarization
- b. Threshold depolarization
 - -- Critical, minimum amount to produce action potential
 - -- Varies -- about #40 mV
 - -- Stimulus must be strong enough to reach this level
- c. All-or-none law
 - -- When threshold reached
 - -- action potential occurs
 - -- nervous impulse always follows
 - -- If threshold not reached
 - -- no action potential at all

Page 19

- -- no nervous impulse possible
- -- Supra-threshold depolarization
 - -- above-threshold
 - -- action potential no stronger
- -- Sub-threshold depolarization
 - -- does represent effect on membrane
 - -- rapid additional depolarization could reach threshold

--extremely important [explained later]

- d. Sodium gates
 - -- Depolarization [previously described]
 - -- Upon reaching threshold amount
 - -- gates open more, to their maximum
 - -- no additional stimulus occurs
 - -- caused by positive feedback
- e. Spike
 - -- Describes sharp peak on oscilloscope
 - -- Produced by action potential
 - -- upward part is depolarization
 - -- downward part is repolarization
 - -- Lasts for 1 msec, maximum

3. Amount

- -- +20 mV
- -- Quite variable in different neurons

Actual Impulse

- 1. Concept
 - -- Series of action potentials
 - -- Occur in succession -- one after the other
 - -- Each one generates the next
 - -- Each occurs farther away on membrane
 - -- Eventually conducted over entire membrane of neuron
 - -- Begins at original site of threshold stimulus/depolarization

2. Refractory period

- -- 500 nsec (0.5 msec) period -- during spike
- -- Affected membrane unresponsive to further stimulation
- -- Reason
 - -- Sodium gates opened maximally
 - -- No more depolarization possible
- -- Absolute refractory period
 - -- Early in spike
 - -- As just described
- -- Relative refractory period
 - -- Later in spike
 - -- Much stronger stimulation could depolarize
 - -- Due to sodium gates now being closed
- -- This prevents any behavior analogous to wave summation for muscle

3. Variations

- a. Strength
 - -- New action potentials generated as impulse spreads
 - -- No loss in magnitude
 - -- Same strength at any point over membrane

- -- Variations in mV of different impulses irrelevant
- b. Velocity
 - -- Varies greatly in different neurons
 - -- Range 1 120 M/sec
 - -- Thicker neurons conduct faster
 - -- Medullated neurons conduct faster
- c. Medullation
 - -- Each spike only occurs at nodes
 - -- Termed saltatory (jumping)
 - -- Fastest neurons have farthest spaced nodes
 - -- Exact mechanism debated
- d. Impulse frequency
 - -- Maximum number possible -- about 1000/sec
 - -- Limiting factor -- each spike requires 1 msec

Fatigue

- 1. Concept
 - -- Neuron which is unable to be depolarized
 - -- No action potential or impulse possible
 - -- Not a frequent occurrence

2. Reason

- -- Sodium gradient inside/outside neuron too low
- -- No excess sodium in ECF to cause depolarization
- -- Caused by too many impulses in rapid succession
 - -- 100,000 impulses at maximum frequency
 - -- At lower frequencies, sodium gradient maintained

- 3. Recovery
 - -- Sodium pump increases activity
 - -- Recovers as soon as gradient at minimal level

Hyper-polarization

1. Importance

- -- Prevents or inhibits impulses
- -- Equally important
 - -- Provides a moderating balance in system
 - -- [explained later]

2. Causes

- a. Concept
 - -- Increase in resting potential
 - -- Opposite of depolarization
- b. Initiation
 - -- Inhibitory influences on neuron membrane [explained later]
 - -- Very low level, persistent stimulus as well
- c. Two possible responses (same resulting potential)
 - 1) Potassium
 - -- gated channels open
 - -- enhances resting potential
 - -- different beginning point than repolarization
 - 2) Chloride
 - -- channel gates open
 - -- inward rush of negative ions
 - -- same effect as outward K⁺

-- Note: any one neuron has either K⁺ or Cl[#] response

3. Amount

-- <#70 mV -- e.g. #100 mV

- -- Tremendous variation
- -- Depends on degree of inhibition required
- -- Amount of depolarization to reach threshold now greater

-- #70 mV less #40 mV = +30 mV (threshold)

-- #100 mV less #40 mV = +60 mV (sub-threshold)

SYNAPTIC TRANSMISSION

Importances

- 1. Direction of conduction
 - -- Determines impulse direction over connected neurons
 - -- Only allows axon endings to affect other neurons
 - -- Act as one-way valves [exceptions later]
- 2. Timing
 - -- Causes strategic delays in impulses over grouped neurons
 - -- Produces effects when they are needed
 - -- Slower action between neurons -- impulse over each faster

<u>Concepts</u>

- 1. Synapse
 - a. When used as a noun
 - -- Denotes a structure
 - -- This connects one neuron with another

- b. When used as a verb
 - -- Denotes a function
 - -- The action which occurs between 2 neurons

2. Relative roles of connected neurons

- a. Pre-synaptic
 - -- Axon endings
 - -- Where each cell influences other neurons
- b. Post-synaptic
 - -- Any neuron region except axon endings
 - -- Where each cell is influenced by other neurons

3. Types

[left of dash = pre-synaptic; right of dash = post-synaptic]

- a. These will be considered for rest of this topic
 - --axo dendritic
 - --axo somatic
 - --axo axonic
- b. These are exceptions, not to be mentioned again (they are important)
 - --dendro dendritic [exception
 - --dendro axonic [exception
 - --two way (bi-directional or reciprocal)
 - -- e.g. axo-dendritic/dendro-axonic combination
 - -- give added functionality

Structure

- 1. Pre-synaptic parts
 - a. End bulb (synaptic knob or bouton) -- swelling at tip of axon ending
 - b. Vesicles
 - -- Within end bulb
 - -- Similar to Golgi secretion vesicles
 - -- Clustered near membrane adjacent to post-synaptic
 - c. Transmitter
 - -- Chemical substance
 - -- Contained within vesicles
 - -- Exception
 - -- from neurosecretory endings
 - -- a hormone, not a transmitter
 - d. Pre-synaptic membrane
 - -- Bottom of end bulb
 - -- Conforms to contour of post-synaptic
 - -- Modified to permit transmitter release from vesicles
- 2. Synaptic gap (cleft)
 - -- No physical contact between pre- & post-synaptic
 - -- Same as myo-neural junction
 - -- Gap of about 25 nm
 - -- Transmitter released here -- diffuses across
- 3. Post-synaptic parts
 - a. Spine
 - -- Knob-like projection from dendrite or soma

- -- Contact structure for end bulb
- -- Other surface shapes exist (e.g. flat)
- b. Post-synaptic (sub-synaptic) membrane
 - -- Covers spine or flat surface
 - -- Corresponds in area to pre-synaptic membrane
 - -- Modified to respond to transmitter
- c. Membrane receptors
 - -- Membrane proteins
 - -- Primarily sensitive to the transmitter

Mechanism of Action

- 1. Pre-synaptic
 - a. Nervous impulse conducted down axon & all endings
 - b. End bulb
 - -- Vesicles fuse with pre-synaptic membrane
 - -- Exocytosis causes transmitter release into cleft
- 2. Cleft
 - -- Transmitter diffuses across
 - -- Was more concentrated in vesicles

3. Post-synaptic

- a. Receptors
 - -- Bind with transmitter
 - -- Undergo change in shape & activity
- b. Diffusion channels
 - -- Receptors are gate controllers for channels
 - -- Control gates directly or indirectly

- -- Gates open due to shape change
- -- Diffusion of particular ion now increased
- -- Variable effects
 - -- depends on synapse type
 - -- [details later]

4. Delay time

- -- Above mechanism takes about 500 600 nsec
- -- Significant delay compared with spike & faster impulses

5. Fatigue

- -- Frequent impulses can deplete transmitter
- -- About 10,000 impulses would be required
- -- Fatigued synapse cannot operate
- -- Transmitter stores replenished

6. Transmitter disappearance

- a. Excretion
- b. Hydrolyzed or otherwise degraded
 - -- This is the most used technique
 - -- e.g. acetylcholinesterase (AChE) hydrolyzes acetylcholine (Ach) to acetate (widely metabolized) and choline (reused by neurons)

Effects (Responses)

- 1. Excitation (stimulation)
 - a. General
 - -- Only one of two possible responses

Page 28

- -- Any one synapse has only this response or the other
- b. Depolarization
 - -- Sodium channels opened by receptors
 - -- Potential goes >#70 mV
 - -- Exact amount & impact [later]
- c. Excitatory post-synaptic potential
 - -- Called EPSP
 - -- Used to identify this synaptic type

2. Inhibition

- a. General -- this is the only other possible response
- b. Hyper-polarization
 - -- Either potassium or chloride channels opened
 - (any one synapse will use one <u>or</u> the other)
 - -- Potential goes <#70 mV
- c. Inhibitory post-synaptic potential -- called IPSP

3. Mechanisms for two synaptic types

- a. Different transmitters
 - -- Many specific transmitter chemicals
 - -- Some always in EPSP synapses
 - -- Some always in IPSP synapses
- b. Different post-synaptic membrane receptors
 - -- Examples of one transmitter in both EPSP & IPSP
 - -- Different receptor types
 - -- Actually, receptor type is always responsible

- 4. Importance
 - -- Why is IPSP necessary ?
 - -- What are the functions & benefits of IPSP ?
 - -- Isn't EPSP adequate -- it can lead to action potentials ?
 - a. Sharpens (refines) responses
 - -- Permits discrimination of information
 - -- Turning process off is a response
 - b. Limits responses
 - -- Blocks unnecessary pathways & actions
 - -- Allows discrete, direct responses
 - c. Maintains order
 - -- EPSP only can stimulate
 - -- Prevents over-stimulation -- braking mechanism
 - d. Feedback circuits
 - -- Negative feedback permitted
 - -- EPSP & IPSP can negate each other

Transmitter Chemistry

There are many transmitters—only those used as examples will be considered

Potentials

- 1. Post-synaptic net potential
 - -- Change per synapse
 - -- Effect of release of transmitter from one end bulb
 - -- Potential (EPSP or IPSP) only changes 1 mV

- -- Implication
 - -- Individual synapse has little effect
 - -- e.g. EPSP would only depolarize from #70 to #69 mV
- -- How synapses effectively utilized
 - -- More than one synapse required
 - -- Must be coordinated effects
- -- Think of this as groups of end bulbs
 - -- Groups affect one neuron (in post-synaptic role)
 - -- Effect of group's end bulbs collective -- summation
 - -- Any one group could produce threshold depolarization
- -- Reason for different groups
 - -- Each represents unique combination
 - -- Permits variable effects of different endings
 - -- Any impulse generated from many other impulses

2. Summation

- a. General group principles
 - -- Endings come from more than one neuron's axons
 - -- Possible to have more than one ending from one axon
 - -- Each ending only has 1 mV potential effect
 - -- Endings of both EPSP & IPSP type
 - -- Summed effect = EPSP less IPSP
- b. Spatial summation
 - -- One of 2 ways group's summed effects accomplished
 - -- Simply the number of end bulbs simultaneously active
 - -- e.g. to produce threshold depolarization
 - -- 30 mV of depolarization required

Page 31

- -- 30 EPSP end bulbs must "fire" together
- -- 30 EPSP x 1 mV = +30 mV
- -- threshold reached (AP & impulse follow)
- -- IPSP end bulbs usually active as well
 - -- for threshold, additional EPSP required
 - -- e.g. (40 EPSP x 1 mV) # (10 IPSP x 1 mV) = +30 mV
- -- e.g. to prevent threshold depolarization
 - -- either inadequate EPSP or counteracting IPSP
 - -- 25 EPSP x 1 mV = +25 mV (subthreshold)
 - -- (30 EPSP x 1 mV) # (5 IPSP x 1 mV) = +25 mV
- c. Temporal summation
 - -- The other way group's summed effects accomplished
 - -- This represents the *frequency* of end bulb "firings"
 - -- end bulbs do not just have to "fire" once
 - -- can "fire" several times in rapid succession
 - -- if fast enough, effects are accumulated
 - -- e.g. threshold depolarization with only 10 EPSP's

-- 3(10 EPSP) x 1 mV = +30 mV

- -- each of 10 active 3 times in rapid succession
- -- same effect as 30 EPSP's working spatially
- d. Combination
 - -- In reality, both spatial & temporal occur together
 - -- e.g. threshold, using only EPSP end bulbs

-- [3(5 EPSP) + 15 EPSP] x 1 mV = +30 mV

-- Various degrees of counteraction between EPSP & IPSP

3. Facilitation

- a. Concept
 - -- When EPSP's are more prevalent
 - -- But, depolarization held just below threshold

b. Significance

- -- State of readiness of post-synaptic group sites
- -- Only slightly increased depolarization causes threshold

c. Mechanism

- -- Usually, IPSP's used to diminish depolarization
- -- For threshold, enough IPSP's simply stop "firing"
- d. Lack of resting potential
 - -- Most neurons kept perpetually facilitated
 - -- So, resting is mainly of theoretical interest
 - -- Usually only seen in experimental situations
 - -- It is important
 - -- its possibility required as reference point
 - -- all knowledge of other potentials from this
- e. Two most important situations
 - 1) Threshold depolarization
 - -- permits AP & impulse
 - -- impulses required to cause end bulb "firings"
 - 2) Sub-threshold depolarization
 - -- this is facilitation
 - -- required to prevent threshold when not needed

NEURONAL POOLS

Concept

1. Definition

Logical groupings of whole neurons

- 2. Basis
 - -- Every neuron has some connection with all others
 - -- Each neuron directly or indirectly synapses with all others
 - -- There are no isolated neurons

Purposes

- 1. Permits specific tasks
 - -- Logic for choice of neurons in each pool
 - -- Different neuron combinations carry varied information
- 2. Basis for a group of EPSP end bulbs
 - -- These would affect one post-synaptic site
 - -- This is essence of how an impulse can be produced
- 3. Basis for a group of IPSP end bulbs
 - -- These would affect one post-synaptic site
 - -- Work in concert with EPSP end bulbs
 - -- This is essence of how impulses are prevented

Basic Principles

- 1. Convergence
 - -- One of 2 basic facts about extent of interconnections
 - -- Many pre-synaptic endings converge on any one neuron

- -- Represents the effects of the many upon one other
- -- Extent
 - -- Hundreds up to hundreds of thousands of endings
 - -- From a few up to thousands of pre-synaptic axons

2. Divergence

- -- The other basic fact about interconnections
- -- Involves one neuron in its pre-synaptic role
 - -- Its axon endings diverge
 - -- Will contact other neurons in post-synaptic role
- -- Represents the effects of one upon many others
- -- Extent -- a few up to hundreds of other neurons

<u>Types</u>

- 1. Afterdischarge pool
 - a. Concept
 - -- Pool which produces certain frequency of impulses
 - -- Series of rapid impulses, one after another
 - b. Uses
 - -- Skeletal muscle wave summation for tetanus
 - -- Complex mental functions
 - -- those that require repetitive impulses
 - -- e.g. mathematical calculations
 - c. Mechanism
 - -- Most simply -- chain of neurons
 - -- endings of #1 synapse with each of others
 - -- endings of #2 synapse with each remaining

- -- each remaining neuron does the same
- -- Assumptions for this example
 - -- "synapse" actually means a group of endings
 - -- EPSP will predominate
 - -- impulse will cause threshold at post-synaptic
- -- Impulse on #1 reaches all others at same time
 - -- generates impulses on #2, #3 & so on
 - -- impulses on others are simultaneous
- -- Impulse on #2 reaches all others at same time
 - -- occurs shortly after #1's impulse
 - -- generates 2nd impulse on #3 & so on
- -- Series of impulses accomplished
 - -- 2 impulses in succession on #3
 - -- 3 impulses on #4
 - -- 4 impulses on #5 & so on
- -- Good example of delays caused by synapses

2. Reverberation pool

- a. Concept
 - -- Cyclical (circular) stimulation of neuronal chain
 - -- Impulses (or inhibition) continuous

b. Uses

- -- Timing of breathing movements from medulla
- -- Short-term memory
 - -- neurons continuously stimulating each other
 - -- outside interruption (distraction) halts

c. Mechanism

[same assumptions as above for afterdischarge]

- -- Most simply demonstrated with 2 neurons
 - -- #1 synapses with #2
 - -- #2 synapses back to #1
- -- Impulse from #1 to #2
 - -- impulse generated on #2
 - -- goes back to #1
- -- Second impulse over circuit
 - -- generated by impulse from #1 to #2
 - -- causes #1 to stimulate #2 again
 - -- #2 then stimulates #1 again as well
- -- Reverberation accomplished
 - -- 3rd, & subsequent, impulses generated
 - -- so, #1 & #2 reverberating (back & forth)
- -- How is this stopped ?
 - -- other neurons required (#3 minimum)
 - -- could use IPSP to stop #1 or #2
- --Use e.g. determining how long an afterdischarge pool will be active

3. Other Types

- a. Introduction
 - --There are more, but not all will be considered
 - --Note: the naming of some will be my own (in parenthesis) and not standardized

b. "On/Off" pool

--This would activate (on) or deactivate (off) another pool

--E.g. activating/deactivating a reverberation pool

c. "On /Off Switching" pool – would control an "On/Off" pool

d. Parallel Processing

-- This is a fundamental, very important mechanism for integration of numerous mental and physical mechanisms

--This involves the simultaneous transmission over varied sensory and/or motor pathways

-- Thus, there can be various responses that are logically correlated, occurring at the same time

-- E.g. When feeling a sudden sharp pain on one's arm, the following reactions might occur:

- -- looking at the arm
- -- recognizing a bee
- -- knocking the bee off
- -- jumping up from the chair
- -- probably shouting or saying something (bleep!)