© 2017 William A. Olexik

INTRODUCTION

System Concept

- 1. Component organs
 - a. Bones
 - b. Joints (articulations)

2. Tissues represented in organs

- a. Osseous (bone) -- most abundant
- b. Cartilage
 - -- Second in abundance
 - -- Hyaline, elastic & fibrous
- c. Miscellaneous connective
 - -- Dense collagenous -- e.g. perichondrium, ligaments
 - -- Dense elastic -- e.g. stylohyoid ligament
 - -- Reticular -- red bone marrow
 - -- Adipose -- yellow bone marrow
- d. Nervous
- e. Vascular (blood vessels)

3. Notochord

- -- Early embryonic -- 18 days 3 months
- -- Original skeleton -- support in long axis
- -- Dense fibrous connective tissue rod
- -- Mostly disappears -- remnants between some vertebrae

Functions

- 1. Support & maintain body form -- most common
- 2. Protection -- e.g. cranium
- 3. Leverage for movement
 - a. Anchorage for muscles
 - b. Joints
 - -- Pivot points
 - -- Limit direction of movement
 - -- Limit degree of movement
- 4. Hemopoiesis -- blood cell formation
- 5. Storage
 - a. Nutrients
 - -- Minerals -- e.g. Ca, Fe
 - -- Organic -- fat
 - b. Toxic metals -- e.g. Pb, Cd, Hg

Skeleton As A Whole

- 1. Axial
 - a. Meaning -- upright axis
 - b. Components -- 80 bones
 - -- Skull -- 28
 - -- Hyoid -- 1
 - -- Vertebral Column -- 26
 - -- Thorax -- 25

- c. Wormian (sutural) bones
 - -- In addition to 80
 - -- Variable number, size & shape
 - -- Randomly formed as cranial sutures develop
 - -- Possibly genetically determined

2. Appendicular

- a. Meaning -- appendages
- b. Components -- 126 bones
 - -- Pectoral girdle -- 4
 - -- Upper extremity -- 60
 - -- Pelvic girdle -- 2
 - -- Lower extremity -- 60
- c. Sesamoid bones
 - -- In addition to 126 -- excluding patellae
 - -- Variable number, size & shape (ovoid)
 - -- Appear at any time -- fetal through old age
 - -- In tendons of higher stress joints
 - -- e.g. thumbs & great toes
 - -- e.g. gastrocnemius
 - -- Function(s) disputed
 - -- modify muscle force or pull ?
 - -- reduce friction ?
- d. Non-sesamoid accessory bones
 - -- Mostly in feet
 - -- From formation (ossification) irregularities

BONE STRUCTURE

Descriptive Terms

1. Shape Classification [not very useful]

a. Long

- -- Linear, elongated
- -- Hollow diaphysis -- epiphyses only at ends
- -- Extremity bones -- except wrist & ankle

b. Short

- -- Compact, squared off
- -- Inner spongy, outer shell compact
- -- Carpals & tarsals

c. Flat

- -- Cranial bones best example
- -- Sternum
- d. Irregular -- all those not as above

2. Projections & processes

- a. Process (epiphysis) -- generic for any projection
- b. Condyle or head-- smooth, for articulation
- c. Spine or spinous process -- sharp or ridge-like
- d. Trochanter or tubercle -- rough, for muscle attachment

3. Depressions & openings

- a. Foramen, canal or meatus -- hole
- b. Fossa -- depression
- c. Notch -- gap or break in contour

Bone Marrow

- 1. Red marrow
 - a. Locations
 - -- Within spaces
 - -- of spongy bone
 - -- marrow (medullary) cavities
 - -- Immature (fetus-young child) -- 100 % in all bones
 - -- Mature -- great decrease in amount
 - -- cranial (not other skull bones)
 - -- axial (vertebral bodies, ribs, sternum)
 - -- clavicles, scapulae, os coxae
 - -- humerus & femur (only proximal epiphyses)
 - b. Functions
 - -- Hemopoiesis
 - -- Erythropoiesis (RBC)
 - -- Leukopoiesis (4 of 5 WBC's)
 - -- Thrombopoiesis (platelet)
 - -- Phagocytosis
 - -- old erythrocytes

-- immune-related

-- Storage -- Fe

c. Structure

- -- Reticular tissue framework
- -- Myeloid (stem or CFU) cells
 - -- altered mesenchyme cell
 - -- hemopoietic, becoming RBC, WBC or platelet
- -- Immature blood cell stages
- -- Plasma cells -- from lymph nodes (e.g.)
- -- Adipocytes -- scattered groups
- -- Vascular
 - -- blood vessels (abundant)
 - -- sinusoids (pouch-like)

2. Yellow marrow

- a. Locations
 - -- Immature -- none
 - -- Mature -- begins at puberty
 - -- more abundant than red
 - -- all bony spaces not containing red
- b. Origin & structure
 - -- Conversion from red marrow
 - -- Myeloid cells diminish in number
 - -- Adipocytes increase in number

- c. Function
 - -- Fat storage
 - -- Red marrow functions disappear
- d. Reversion
 - -- Can go back to red marrow
 - -- If needed -- loss of red marrow (e.g.)
 - -- Adipocytes diminish
 - -- Myeloid cells reproduce

3. Intergrades

- -- Red & yellow categories not always clearly defined
- -- Some marrow may have half adipose/half myeloid (e.g.)
- -- Many possible ratios of red/yellow mix
- -- Sometimes represents conversion or reversion in progress

SKELETAL PART	MALE	FEMALE
General Size	Larger	Smaller
General Density	Matrix more dense	Matrix less dense
General Shape	Contours sharper/pronounced	Contours more rounded
General Process	More prominent/massive	Less prominent/massive
Mandible	Relatively larger	Relatively smaller
Pelvic Depth	Deeper	More shallow
Pelvic Width	Funnel shaped	Flaring
True Pelvis	Heart shaped	Wide oval
Pubic Arch	≤ 90°	> 90°
Sacrum	Narrow, straight, vertical	Wider, curved, horizontal
Соссух	More rigid	More flexible

AGE CHANGES

Infancy To Adulthood

1. Timing

- -- Women -- approx. 18 years
- -- Men -- approx. 25 years

2. General

- a. Size increase -- absolute, not relative
- b. Size variations -- relative [details below]
- c. Osseous tissue increases

3. Head

- a. Size/shape
 - -- Becomes smaller proportionate to trunk -- began larger
 - -- Face quite reduced
 - -- lack of teeth diminishes jaws
 - -- nose not yet projecting
 - -- Elongated -- similar to very developed brain's shape
- b. Cranial size increases -- 350 cc 1500 cc
- c. Fontanels
 - -- Soft spots between cranial bones
 - -- Unossified tissue -- membrane bones [details later]
 - -- Gradually disappear as bones meet -- 1.5 2 years

d. Sutures

-- Follow fontanel disappearance

- -- Final fusion 20⁺ years
- 4. Thorax
 - -- Shape from more rounded to elliptical
 - -- Due to rib & sternal development
- 5. Legs
 - -- Become longer proportionate to trunk
 - -- Began shorter
- 6. Vertebral column
 - a. Thoracic curvature -- present at birth
 - b. Sacral curvature -- present at birth
 - c. Cervical curvature
 - -- Appears after birth
 - -- From head raising
 - d. Lumbar curvature
 - -- Appears after birth
 - -- From walking

7. Epiphyses

- a. Epiphyseal plates (disks)
 - -- Hyaline cartilage -- middle of epiphysis
 - -- Growth zone -- permits lengthening
- b. Gradual replacement by osseous tissue
 - -- Earlier -- same rate as cartilage increase
 - -- Later -- ossification faster
- c. Metaphyses
 - -- Complete closure (ossification) of plates

- -- 18 years (women) -- reason for shorter avg. height
- -- 25 years (men)
- -- Exception -- clavicles 30⁺ years

After Maturity

- 1. General
 - a. Surfaces more textured
 - b. Contours (margins) become shaggy & enhanced
 - c. Ridges & processes more prominent

2. Osseous tissue

- a. General -- decreased amount, density & integrity
- b. Inorganic component -- minerals
 - -- Women -- more pronounced
 - -- Osteoporosis -- pathological, not normal

3. Kyphosis

- -- Increased thoracic curvature
- -- Stoop-shouldered condition
- 4. Sesamoid bones
 - -- Increase in number
 - -- Mostly in great toes & Achilles tendon

5. Sternum

- -- Manubrium & gladiolus fuse
- -- Xiphoid ossifies -- eventually fuses with gladiolus
- 6. Clavicles -- epiphyseal closure

CARTILAGE

<u>General</u>

1. Temporary

- -- Most hyaline will not persist through life
- -- Gradually replaced by osseous tissue
- -- Nearly entire skeleton hyaline in early fetus
- -- Reason
 - -- Cartilage develops rapidly compared with osseous
 - -- Temporary support provided while skeleton matures

2. Permanent

- a. All elastic
- b. All fibrous
- c. Some hyaline
 - -- Articular cartilages
 - -- Costal
 - -- Nasal
 - -- Respiratory -- laryngeal, tracheal, bronchial

Development and Growth

- 1. Mesenchyme
 - a. Description
 - -- Mass of mesenchymal cells
 - -- Suspended in non-(or delicate) fibered matrix
 - b. Activity
 - -- Extra division -- cells now predominate
 - -- Most cells differentiate into chondroblasts
 - -- Outside cells become fibroblasts [details later]

-- Cells under fibroblasts remain mesenchymal

2. Chondroblasts

- a. Mitotic division produces more chondroblasts
- b. Matrix deposition
 - 1) Secrete unique cartilaginous matrix
 - 2) Semi-solid -- compressible & flexible
 - 3) Fibers
 - -- hyaline has delicate collagenous
 - -- fibrous has thick, close collagenous
 - -- elastic has thick, close elastic
 - 4) Ground substance

glycosaminoglycans:	- hyaluronic acid
	- chondroitin sulfates
	 keratan sulfate

- -- proteoglycans = above + proteins
- -- create semi-solid gel
- -- provide scaffolding for fibers
- -- bind tissue fluid for diffusion
- c. Cells now farther apart & entrapped in lacunae

3. Growth patterns/regions

- a. Interstitial
 - -- Deep within cartilage
 - -- Chondroblasts divide
 - -- New matrix formed -- pushes cells apart
 - -- Causes inward expansion of cartilage
- b. Appositional
 - -- Beneath perichondrium

- -- New chondroblasts form matrix
- -- Causes outward expansion of cartilage

4. Chondrocytes

- -- Name for former chondroblast when matrix completed
- -- Basically a maintenance cell

5. Perichondrium

- a. Outermost mesenchymal cells
 - -- Differentiate into fibroblasts
 - -- Secrete ground substance & form collagenous fibers
 - -- Become fibrocytes
- b. Inner zone
 - -- Between perichondrium and cartilage proper
 - -- Mesenchymal cells remain
 - -- Differentiate into chondroblasts as needed
 - -- for appositional growth
 - -- for repair

Mature Changes

- 1. Repair & regeneration
 - a. Mildly damaged cartilage
 - -- Inner zone mesenchymal cells migrate to site
 - -- Differentiate into chondroblasts
 - -- Damage well repaired
 - b. Severely damaged cartilage
 - -- Chondroblasts appear at site
 - -- Little or no new cartilage appears

- -- Dense fibrous connective tissue usually develops
- -- Could later become ossified
- 2. Degeneration (regression)
 - a. Purpose
 - -- Temporary strengthening
 - -- Usually prior to replacement with osseous tissue
 - b. Occurrence
 - -- Normal part of osseous tissue formation
 - -- Abnormal in permanent cartilage
 - -- sometimes occurs in old age
 - -- may occur as mistake in regeneration
 - c. Process
 - -- Chondrocytes enlarge (hypertrophy)
 - -- Secrete alkaline phosphatase
 - -- Mineralization of matrix -- minerals precipitated
 - -- Diffusion not possible through solid matrix
 - -- Chondrocytes die -- phagocytes clear out debris

OSSEOUS TISSUE

General

- 1. Comparisons with cartilage
 - a. Matrix mineralization normal -- does not cause cell death
 - b. Cells (osteocytes) also trapped within lacunae
 - c. Cellular nourishment enabled in solid matrix -- canaliculi
 - d. Highly vascular
 - e. Developmental steps essentially the same
 - f. Appositional growth only

2. Matrix composition

- a. Organic
 - 1) Functions
 - -- maintains shape
 - -- provides some flexibility
 - -- fiber surfaces substrate for minerals
 - 2) Components
 - -- primarily collagenous fibers (>90%)
 - -- proteoglycans
- b. Inorganic
 - 1) Function -- hardness
 - 2) Components -- mineral salt crystals
 - -- mostly hydroxyapatite Ca₁₀(PO₄)₆(OH)₂
 - -- needle-like; parallel collagenous fibers
 - -- others e.g. CO₃, Mg, Cl, F, Na, Fe, citrate

Ossification (Osteogenesis)

1. Mesenchyme

- -- Basically same as cartilage
- -- Mesenchymal cells become osteoblasts

2. Osteoblasts

- a. Basically same as cartilage
- b. Intercellular connections
 - -- Extensions from cells
 - -- Meet each other
 - -- Those near blood vessels extend there as well
- c. Mineralization of matrix
 - -- Following ground substance & collagenous fibers
 - -- Extracellular enzymes secreted
 - -- Mineral salts from blood (abundant supply)
 - -- Precipitation of mineral salts [details above]
 - -- Matrix now true solid

3. Cellular nourishment

- -- Matrix does not quite touch osteoblast membranes
- -- Intercellular extensions
 - -- Disconnect from each other
 - -- Withdraw almost to bodies of cells in lacunae
- -- Spaces become filled with tissue fluid
- -- Canaliculi
 - -- Tiny canals -- formerly occupied by extensions
 - -- All lacunae & vascular channels interconnected

4. Growth pattern/regions

- -- Appositional only
- -- No interstitial -- solid matrix cannot expand from within

5. Osteocytes

- -- Name for former osteoblast when matrix completed
- -- Maintenance cell

6. Periosteum

- -- Basically same as perichondrium of cartilage
- -- Inner zone of mesenchymal cells present just as in cartilage

Mature Changes

- 1. Age changes
 - a. Immature osseous tissue
 - -- Called woven (-fibered) or spicular
 - -- Initial form produced by ossification process
 - -- Principal type before birth
 - -- Randomly arranged matrix parts & osteocytes
 - -- Spongy in texture -- vascular spaces, not marrow
 - -- Can be produced faster than mature type
 - b. Mature osseous tissue
 - 1) Called lamellar or parallel-fibered
 - 2) Most appears after birth
 - 3) Woven bone first destroyed
 - -- osteoclasts secrete catalytic enzymes
 - -- osseous matrix broken down
 - -- osteocytes die
 - -- osteoclasts phagocytize debris

- 4) Lamellar bone tissue produced by new ossification
- 5) Lamellae are merely repeating layers of matrix
- 6) Present in both compact & spongy arrangements

2. Remodeling

- a. Process
 - -- Destruction of lamellar bone tissue
 - -- Osteoclasts [previously described]
 - -- New ossification replaces old -- still lamellar

b. Timing

- -- Occurs in scattered areas -- systematic
- -- Always occurring
- -- Continues throughout life
- -- Average life of osteocyte -- 25 years
- -- Slows in later years

c. Benefits

- 1) Adjust strength -- varies with degree of stresses
- 2) Shape changes
 - -- accommodate new stress patterns
 - -- contours, processes modified as needed
- 3) Fresh minerals -- enhances body calcium balance
- 4) New organic matrix -- weakens & becomes brittle

3. Repair & regeneration

- a. Osseous tissue usually regenerates completely
- b. Failure to regenerate
 - -- If peri-/endosteum destroyed
 - -- inner zone mesenchymal cells required
 - -- If vascular supply destroyed
- c. Role of blood vessels
 - -- Essential to supply minerals for inorganic matrix
 - -- Stimulate mesenchymal cells to become osteoblasts
 - -- Where blood vessels have yet to be regenerated:
 - -- chondroblasts appear
 - -- hyaline cartilage develops
 - -- blood vessels later lead to degeneration
 - -- ossification now occurs

Intramembranous Ossification

- 1. Concept
 - -- Direct ossification
 - -- No cartilaginous precursor -- [explained later]

2. Occurrence

- a. Mostly flat skull bones -- whole bone or only a part
- b. Completely membrane bones
 - -- Parietals
 - -- Frontal
 - -- Lacrimals
 - -- Nasals
 - -- Maxillae

- -- Zygomatics
- -- Sesamoids
- c. Partly membrane, remainder cartilage replacement [below]
 - -- Occipital
 - -- Temporals
 - -- Sphenoid
 - -- Mandible

3. Process

- a. Occurs within special membrane
 - -- Vascular, dense collagenous tissue
 - -- Contains mesenchymal cells
- b. Ossification center
 - -- One or more, depending on bone -- e.g. occipital 2
 - -- Osteoblasts develop
 - -- Typical ossification process occurs
- c. Fontanels -- [discussed previously]
 - -- Unossified membrane
 - -- Permit skull distortion during birth

Intracartilaginous Ossification

- 1. Concept
 - a. Indirect ossification
 - b. Cartilage development initially
 - -- Hyaline
 - -- Miniature of future bone
 - c. Systematically replaced

- -- Invasion by blood vessels
- -- Degeneration of cartilage
- -- Ossification occurs
 - -- on framework of debris
 - -- in appositional layers
- d. Timing
 - -- Most begin about 8 weeks in fetus
 - -- Some not until childhood -- e.g. carpals & tarsals
- e. Resulting osseous tissue same as intramembranous

2. Occurrence

- a. Non-membranous skull bones
- b. Non-membranous portions of mixed skull bones
- c. Remainder of axial skeleton
- d. Appendicular skeleton -- except sesamoids

3. Comparison with intramembranous

- a. Intramembranous and intracartilaginous <u>not</u> different "kinds", but the same tissue formed in two different situations (environments)
- b. Spongy and compact not two "kinds", but only density and arrangement of components vary.
- c. Woven and lamellar are closest to being two "kinds" of tissue.

4. Process [long bone as example]

- a. Primary ossification center
 - 1) Within central diaphysis
 - 2) Spongy bone initially
 - 3) Expands towards epiphyses
 - 4) Later degenerates -- marrow cavity develops

- b. Periosteal bone
 - 1) Occurs around primary center
 - 2) Beneath developing periosteum
 - 3) Successive layers added appositionally
 - 4) Permits growth in diameter of bone
 - -- innermost layers degenerate
 - -- new outer layers added
 - -- wall maintains same thickness
- c. Secondary ossification centers
 - 1) Most begin during childhood up through adolescence
 - 2) One within each epiphysis
 - 3) Same basic process as primary center
 - 4) Spongy bone will remain
 - 5) Will continue towards diaphyseal ossification center
- d. Growth in length
 - 1) Primary & secondary centers do not meet yet
 - 2) Cartilage remains between them -- epiphyseal plate
 - 3) Cartilage of plate proliferates interstitially
 - 4) Replaced at the same rate by ossification
 - 5) Continued proliferation & replacement
 - 6) Eventually proliferation slows, then stops
 - 7) Ossification now complete -- epiphyses closed

5. Variations

- -- Different bones have varying numbers of ossification centers
- -- Short bones only have one center
- -- Irregular bones vary greatly -- e.g. :
 - -- Typical vertebra -- 3 primary/5 secondary

- -- Hyoid -- 6 centers (no primary/secondary)
- -- Scapula -- 8 centers