INTRODUCTION

<u>Concept</u>

- A. Tissue
 - 1. Connective
 - 2. Exceptional
 - a. Only liquid tissue
 - b. No intercellular fibers
 - 3. Part of cardiovascular system
- B. Body Fluid
 - 1. Intracellular fluid (ICF) -- 2/3 of total
 - 2. Extracellular fluids (ECF) 1/3 of total
 - a. Tissue (interstitial) fluid -- ¾ of ECF
 - b. Blood -- ¼ of ECF
 - c. Minor (in volume) miscellaneous fluids
 - Cerebrospinal fluid
 - Intraocular fluid
 - Serous fluids -- cardiac, pleural & peritoneal
 - Joint fluid (synovial)

Functions

- A. Transport
 - 1. Nutrients -- organic -- e.g. sugars, amino acids, fats

Blood -- 2

- 2. Inorganic metabolites -- e.g. Na, CI, H, K, Ca, OH, HCO₃, PO₄
- 3. Gases -- O₂ & CO₂
- 4. Water
- 5. Hormones & enzymes
- 6. Antibodies -- immune-related
- 7. Metabolic wastes -- to be excreted
- 8. Blood cells
- B. Fluid Environment
 - 1. Overall
 - a. Maintains all body fluid homeostatic levels
 - b. Via transport through entire body
 - c. Intimately coordinated with tissue fluid
 - 2. Specific contexts
 - a. ph balance -- circulates H^+ & related ions
 - b. Osmotic balance -- circulates water & Na
 - c. Electrolyte balance -- circulates all remaining ions
- C. Body Temperature
 - 1. Absorbs radiated heat from cellular respiration
 - 2. Evenly distributes heat
 - 3. Essential heat retained -- excess eliminated

D. Immunity

- 1. Microbial protection
- 2. Protection against other foreign material

Components

- A. Formed Elements [details later]
 - 1. Concept
 - a. Actually the various types of blood <u>cells</u>
 - b. " Element "
 - From debated status of platelets
 - Not always considered to be cells
 - 2. Types
 - a. Erythrocytes -- red blood cells (RBC)
 - b. Leukocytes
 - White blood cells (WBC)
 - 5 distinct types
 - c. Thrombocytes -- platelets
- B. Plasma
 - 1. Concept
 - a. Liquid portion
 - b. 55% of blood volume
 - c. Suspends & carries formed elements
 - 2. Water
 - a. About 91% of plasma volume
 - b. Functions

Blood -- 4

- Dispersion medium for other substances
- Blood pressure maintenance
- Heat absorption
- 3. Proteins
 - a. General
 - 7% of plasma volume
 - More than 100 different types
 - Most conjugated -- glyco- or lipoprotein
 - Most synthesized by liver
 - b. Albumins
 - 54% of proteins
 - Create proper viscosity -- main role
 - Contribute to colloid osmotic pressure
 - Carriers for other substances -- e.g. hormones
 - c. Globulins
 - 40% of proteins
 - Same functions as albumins -- alpha & beta
 - Immune functions -- gamma globulins
 - Help determine blood type -- gamma
 - d. Others
 - General
 - Serum -- plasma minus these proteins
 - Both involved in coagulation
 - Fibrinogen -- 5% of proteins

- Prothrombin -- 1% of proteins
- Enzymes -- very small percentage
- 4. Miscellaneous other substances
 - a. Remaining 2% of plasma volume
 - b. Organic nutrients -- e.g. glucose, cholesterol
 - c. Vitamins
 - d. Hormones (non-protein)
 - e. Electrolytes -- e.g. Na, Mg, K
 - f. Minerals -- e.g. Zn, Fe, silica
 - g. Wastes -- organic & inorganic

ERYTHROCYTES

General

- A. Features [contrast with leukocytes]
 - 1. Give blood red color
 - 2. Hemoglobin carrier -- most important function
 - 3. Enucleated when mature
 - a. Unique in body
 - b. More space for hemoglobin
 - 4. Perform completely within circulation

- B. Numbers
 - 1. Total -- 25-30 x 10¹²
 - 2. $4.5-5.5 \text{ million / mm}^3 \text{ lower in women}$
 - 3. Hematocrit
 - a. Packed volume
 - b. 47% men / 42% women

C. Appearance

- 1. Size -- 8 μm diameter
- 2. Shape
 - a. Biconcave disc
 - b. From nuclear loss
- 3. Flexible -- must squeeze through 7 μ m capillaries

Hemoglobin

- A. Location
 - 1. Within RBC cytoplasm
 - 2. Confined for 2 reasons
 - a. Small enough molecule to escape from blood
 - b. Protected from destruction
- B. Amount
 - 1. 90% of RBC volume
 - 2. 200-300 million molecules / RBC

- 3. Clinical measure
 - a. 14-16 g / dl for men
 - b. 12-14 g / dl for women

C. Structure

- 1. Conjugated protein
- 2. Protein component
 - a. Globin
 - b. Polypeptide -- about 143 amino acid residues
 - c. 4 polypeptide subunits per molecule
 - d. Variant forms -- occur within same molecule
- 3. Prosthetic component
 - a. Heme
 - b. Amino acid derivative
 - c. Iron held at center
 - d. 4 hemes per molecule -- 1 for each globin subunit
- 4. Function
 - a. Heme
 - Oxygen transport
 - O₂ bonds with Fe
 - [details later -- respiratory system]
 - b. Globin
 - Stabilizes molecule
 - Aids reversibility of O₂ heme reaction

- D. Formation
 - 1. Synthesized within RBC's
 - 2. During erythropoiesis

Erythropoiesis

- A. Introduction
 - 1. Concept -- erythrocyte production
 - 2. Locations
 - a. Before 5 years old
 - Red bone marrow -- within all bones
 - Liver
 - Spleen
 - Lymph nodes
 - b. After 5 years old
 - Red bone marrow only
 - <u>Not</u> all bones now contain red marrow
- B. The process [condensed version]
 - 1. Stem (myeloid or hematopoietic) cells
 - a. Differentiated mesenchymal cells
 - b. Always present -- perpetuated by mitotic division
 - 2. Erythroblasts
 - a. Differentiated stem cells
 - b. Several different types -- each leads to next

- c. Hemoglobin synthesis during this stage
- d. Nucleus shrinks & ejected from cell
- 3. Reticulocyte
 - a. Reticulated dark staining material
 - b. Remnants of various organelles
 - c. Released into general circulation in this stage
- 4. Mature erythrocyte -- several days later
- C. Essential Nutrients
 - 1. Iron
 - a. 50% within hemoglobin
 - b. Remainder stored extensively in body
 - c. Some loss daily -- 1-2 mg (men-women)
 - 2. Vitamin B₁₂ -- essential for DNA synthesis during mitosis
 - 3. Folic acid -- essential for DNA synthesis
 - 4. Copper essential for iron absorption
 - 5. Cobalt part of Vitamin B₁₂ molecule
 - 6. Niacin coenzyme
 - 7. Ascorbic acid (Vitamin C) essential for iron absorption
 - 8. Vitamin B₆ (pyridoxine) coenzyme for amino acid metabolism
- D. Lifespan
 - 1. Approximately 120 days -- because enucleated
 - 2. Destruction
 - a. Liver & spleen

- b. Phagocytes
- c. Iron reused
- d. Remaining heme
 - Converted to bilirubin
 - Excreted in bile
- e. Globin -- back to general amino acid pool
- 3. Turnover rate -- about 1% destroyed / day
- E. Regulation
 - 1. PO₂ of blood gauge for determining rate
 - 2. Erythropoietin (erythropoiesis-stimulating hormone)
 - a. Blood hormone -- glycoprotein
 - b. Secreted in inverse proportion to O₂ level
 - c. Stimulates stem cells to become Erythroblasts
 - d. Sources
 - Kidneys mostly
 - Liver
 - Possibly other regulators of kidneys & liver

Abnormalities

- A. Polycythemia
 - 1. Elevated RBC count from increased erythropoiesis
 - 2. Normal cause
 - a. High altitude

- b. Response to low PO₂
- 3. Pathological cause
 - a. Any condition which lowers PO₂
 - b. e.g. emphysema, asthma, cardiac failure
- B. Anemia
 - 1. Lowered RBC count
 - a. Usually abnormal
 - b. Not always life-threatening -- if moderate
 - c. 2 possible reasons
 - Too few RBC's with normal Hemoglobin (Hb)
 - Normal RBC number with defective Hb
 - 2. Hemorrhage -- plasma replaced relatively quickly
 - 3. Diminished erythropoiesis -- from PO₂ elevation
 - 4. Low level of exercise -- from diminished <u>need</u> for O₂
 - 5. Hemolysis
 - a. Concept
 - Splitting (lysis) of RBC membranes
 - From weakened membranes
 - b. Causes -- various types
 - Aplastic -- from bone marrow destruction
 - Pernicious -- inadequate vitamin B₁₂
 - Sickle cell -- defective Hb & weakened RBC's

LEUKOCYTES

<u>General</u>

A. Features

- 1. Colorless & clear if isolated & concentrated
- 2. Various immune-related functions
- 3. Most phagocytic & mobile
- 4. Have nucleus all their life
- 5. Most function out of circulation in tissue fluid
- 6. 5 distinct types
- B. Numbers
 - 5,000 10,000 / mm³

C. Movements

- 1. Amoeboid
 - a. Autonomous movement
 - b. Used for phagocytosis & diapedesis
 - c. Not all 5 types -- neutrophils & monocytes best
- 2. Diapedesis
 - a. Enter & leave circulation
 - b. Squeeze between lining cells of capillaries
- 3. Chemotaxis
 - a. Follow chemical trail to site of injury
 - b. Attractant chemical from injured cells

Types & Functions

- A. General
 - 1. Only generalized types to be presented
 - 2. Variants exist
 - a. Structural & functional
 - b. Some covered later -- e.g. under immunity
 - c. [structural details in lab]

B. Granulocytes

- 1. Concept
 - a. Cytoplasmic granules
 - b. Characteristic for each type
 - c. Different size, number &/or color
- 2. Neutrophils (polymorphonucleocytes)
 - a. 60 65% of all WBC's -- most numerous
 - b. Medium-large
 - c. One of 2 principal phagocytes
 - Mainly bacteria
 - Usually die from toxicity of effort
- 3. Eosinophils (acidophils)
 - a. 2 4 % of all WBC's
 - b. Large
 - c. Phagocytic -- parasites
 - d. Detoxify substances from other WBC's

4. Ba	asophils ((Mast Ce	ells ?)
-------	------------	----------	---------

- a. 0.5 1 % of all WBC's -- least numerous
- b. Medium
- c. Mast cell
 - Very similar to basophil
 - Probably different cell type -- same function
 - Not in blood -- in various connective tissues
- d. Not phagocytic -- release several substances
 - Histamine -- inflammatory responses
 - Heparin -- anticoagulant
 - Serotonin & bradykinin -- vasodilators

C. Agranulocytes

1. Concept

No regular (size & shape) cytoplasmic granules

- 2. Lymphocytes (plasma cells)
 - a. 20 35 % of all WBC's
 - b. Very small medium
 - c. Plasma cell
 - Derived from lymphocyte
 - Outside of circulation
 - d. Central, controlling role in immunity
 - e. Many specific sub-types [details later]

- 3. Monocytes (macrophages)
 - a. 3 8% of all WBC's
 - b. Large very large
 - c. Macrophage
 - Outside of circulation
 - Very large
 - d. Most important phagocyte
 - Phagocytizes every category
 - Bacteria
 - Viruses
 - Parasites
 - Old RBC's
 - General debris
 - Hardy -- fairly long life span

Leukopoiesis

- A. Concept -- leukocyte formation
- B. Locations
 - 1. Red bone marrow
 - a. Chief site
 - b. All Granulocytes & monocytes
 - 2. Lymphoid tissues
 - a. Lymph nodes, spleen, tonsils, thymus, nodules
 - b. Lymphocytes only

- B. The Process
 - 1. Basically same as erythropoiesis
 - a. Stem (myeloid) cells
 - Differentiate into several distinct groups
 - Generally termed colony forming units (CFU's)
 - Further differentiation within each CFU
 - Produce precursors (progenitors)
 - [details -- b-d below]
 - b. Myeloblast
 - Precursor of all Granulocytes
 - Separate directions for the 3 types
 - c. Monoblast -- monocyte precursor
 - d. Lymphoblast
 - Lymphocyte precursor
 - Different stem cell sub-family from others
- C. Life span
 - 1. Great variation
 - a. Longer lived types -- mono- / lymphocytes
 - b. Hazards of phagocytic activity
 - 2. From minutes to many years
- D. Regulation
 - 1. No one determining factor, due to varied functions
 - 2. Factor sources

- a. Damaged tissues
- b. Some leukocytes -- macrophages & lymphocytes
- 3. Factors
 - a. Interleukin-1 -- general leukopoietic role
 - b. Tumor necrosis factor (TNF) -- general role
 - c. Specific colony stimulating factors (CSF's)
 - GM-CSF -- for Granulocytes & monocytes
 - G-CSF -- for Granulocytes only
 - M-CSF -- for monocytes
 - d. Others -- e.g. other interleukins

Abnormalities

- A. Leukocytosis
 - 1. Elevated WBC count -- above 10,000 / mm³
 - 2. Inflammation & allergic reactions
 - a. 35,000 100,000 / mm³
 - b. From increased leukopoiesis
 - c. Normal (?) -- part of immune response
 - 3. Leukemias
 - a. 250,000 ⁺ / mm³
 - b. Due to abnormal production of WBC's
 - c. Many immature & incompletely formed cells
 - d. Symptoms & death from various causes

- Severe anemia
- Coagulation problems
- Immune suppression
- Nutritional diversion of metabolic resources
- e. Origin
 - Lymphogenic
 - Originates in lymphoid tissues
 - Spreads to non-lymphoid tissues
 - Myelogenic
 - Begins in bone marrow
 - Spreads widely
- f. Severity
 - Chronic
 - Longer duration -- years
 - Some differentiation to nearly normal types
 - Acute leukemias
 - Rapidly severe -- months to death
 - Mostly abnormal, non-functional cells
- B. Leucopenia (Agranulocytosis)
 - 1. WBC count below $5,000 / \text{mm}^3$
 - a. Low / no leukopoiesis
 - b. Too rapid turnover of mature WBC's
 - 2. Nutritional deficiencies -- similar to anemia

- 3. Marrow damage from drugs or radiation aplastic "anemia"
- 4. Acute stage of some infections -- e.g. influenza

THROMBOCYTES (PLATELETS)

General

- A. Features
 - 1. Very small -- 2-4 μm diameter
 - 2. Not cellular -- just irregular-shaped fragments

B. Numbers

150,000 - 300,000 / mm³

C. Functions

Various aspects of hemostasis -- prevention of bleeding

- a. Plug holes in damaged vessels
- b. Release chemicals to initiate clotting process

[details later]

Thrombopoiesis

- A. Introduction
 - 1. Concept -- platelet production
 - 2. Location -- red bone marrow

- B. The Process
 - 1. Stem cells
 - a. Same ones which lead to RBC & WBC
 - b. Differentiation sequence already described
 - c. Specific CFU type
 - 2. Precursor (progenitor) -- megakaryoblast
 - 3. Last stage
 - a. Megakaryocyte
 - b. Platelets split off from this parent cell
- C. Life Span
 - 1. Approximately 10 days, maximum
 - 2. Phagocytized by spleen

Abnormalities

- A. Thrombocythemia (Thrombocytosis)
 - 1. Count 750,000 1,000,000 / mm³
 - 2. Spontaneous proliferation of megakaryoblasts
 - a. Can occur after 50 years of age
 - b. Normal, except combined with other disorders
 - 3. Secondary reaction to various diseases / disorders
 - a. Acute infections
 - b. Hemorrhage
 - c. Hemolysis

B. Thrombocytopenia

- 1. Count below 50,000 / mm^3
- 2. Causes
 - a. Low thrombopoiesis
 - b. Excessive destruction by spleen
 - c. Over utilization
 - d. Dysfunctional platelets
- 3. Symptoms
 - a. Spontaneous hemorrhaging from small vessels
 - b. Increased bleeding time

HEMOSTASIS

Introduction

- A. Concept -- cessation of bleeding
- B. Significance (Causes)
 - 1. Injuries
 - 2. Spontaneous
- C. Steps
 - 1. Vascular spasm
 - a. Wall of blood vessel cut
 - b. Smooth muscle contracts forcefully

- c. Can stop / severely limit bleeding
- d. Lasts at least 30 min.
- 2. Platelet plug
 - a. Injured vessel wall becomes sticky
 - b. Lining cells help block opening
 - c. Platelets stick to wall
 - d. Platelets release thromboxane A₂
 - Other platelets attracted -- plug formed
 - Helps promote vasoconstriction
- 3. Clot
 - a. Needed if vessel spasm & platelet plug inadequate
 - b. [details below]

Coagulation (Clotting)

- A. General
 - 1. Physical cause
 - a. Interwoven threads -- fibrin
 - b. Platelets & cells trapped -- more stable than plug
 - 2. Primary chemical basis
 - a. Fibrin threads -- insoluble
 - b. Fibrinogen -- soluble precursor
 - c. Thrombin -- catalyzes fibrinogen \rightarrow fibrin
 - d. Prothrombin -- inactive thrombin precursor

e. Prothrombin \rightarrow thrombin

B. Details

- 1. Lack of consensus -- several major theories
- 2. Series of enzymatic protein conversions
- 3. 2 basic mechanisms
 - a. Intrinsic -- platelet / plasma interactions
 - b. Extrinsic -- other than platelet initiation
- 4. Steps
 - a. [refer to handout in packet of diagrams]
 - b. Mostly know general products formed & order
 - c. Know all details of reactions #3 and 4
- C. Reasons for Complexity
 - 1. Insures occurrence only when necessary
 - 2. Elaborate / interrelated series of reactions
 - 3. Lessens chance of intravascular clotting

Clinical Factors

- A. Times
 - 1. Bleeding time
 - a. Flow cessation -- 1-4 min.
 - b. Fragile -- only from platelet plug
 - 2. Coagulation time
 - a. 4-6 min.

b. Increased in malnutrition or disease

B. Hemophilia

- 1. More than one type -- slow coagulation or none
- 2. Inherited defective factor I (rare), V, VII, VIII, IX, X, XI, or XII
- 3. Liver disease and Vitamin K deficiency can produce insufficient factor II
- C. Intravascular Clotting
 - 1. Thrombus
 - a. Induced by foreign material
 - Dislodged lining epithelial cell
 - Air or other foreign material
 - Very slow blood flow
 - b. Thrombosis -- condition of having thrombus
 - 2. Embolus
 - a. Dislodged thrombus
 - b. Becomes trapped -- blocks smaller vessels
 - c. Embolism -- condition of having embolus

Anticoagulants

- A. Need
 - 1. Safeguard against thrombosis & embolism
 - 2. Clotting substances abundant

In 100 ml -- enough to clot all body's blood

B. Substances

- 1. Antithrombin
 - a. Globulin
 - b. Neutralizes thrombin
- 2. Heparin
 - a. Glycoprotein
 - b. Antithrombin cofactor -- enhances action
- 3. Endothelial membrane
 - a. Thrombomodulin -- binds thrombin
 - b. Activates protein-C
 - Plasma protein
 - Inactivates several factors
- 4. Fibrin
 - a. Thrombin adsorbed to threads
 - b. More important than other thrombin inactivators
- 5. Plasmin (Fibrinolysin) -- enzymatically dissolves fibrin and fibrinogen