INTRODUCTION

<u>General</u>

A. Concept

Continuous series of interconnected hollow tubes

- B. Functions
 - 1. Primary
 - a. Digestion
 - b. Absorption
 - 2. Secondary
 - a. Ingestion -- receive food
 - b. Propulsion -- move food
 - c. Egestion -- elimination of unabsorbed residue
- C. Extent & Components
 - 1. Alimentary (gastrointestinal or G-I) tract (canal)
 - a. Comprises main tube
 - b. 29-30 feet (~29M) long -- only 1.5 feet(46 cm) superior to diaphragm
 - 2. Principal organs
 - a. Mouth
 - b. Pharynx
 - c. Esophagus
 - d. Stomach
 - e. Small intestine

- f. Large intestine
- 3. Accessory (secondary) organs
 - a. Teeth
 - b. Tongue
 - c. Salivary glands
 - d. Liver
 - e. Gallbladder
 - f. Pancreas
 - g. Nose -- olfactory receptors
- D. Basic Wall Layers [except mouth & pharynx]
 - 1. Mucosa
 - a. Epithelium
 - Lines lumen of tube
 - Stratified squamous, simple columnar or pseudostratified
 - Protection, secretion & absorption
 - b. Connective tissue (basement membrane)
 - Loose (areolar) basically
 - Binds epithelium
 - Vascular -- nourishment & absorption
 - c. Glands
 - Mucus producing
 - Goblet & multicellular
 - Lubrication & moistening
 - Chemical digestive substances

- Both mucus and chemical digestive substances
- d. Muscularis mucosa
 - Outermost portion
 - Causes wrinkling to alter lumen surface area

2. Submucosa

- a. Connective tissue
 - Loose -- vascular
 - Flexible binding of mucosa to muscularis externa, permitting separate movements

b. Glands

- Not present in all organs
- Mucous producing
- c. Submucosal (Meissner's) plexus
 - Nervous tissue
 - Controls glandular secretions and blood flow

3. Muscularis externa

- a. General
 - Thickest layer
 - Smooth, skeletal or a combination
 - 2 or 3 component layers
- b. Component layers
 - Circular
 - Innermost (if only 2 layers)
 - Always present

Digestive -- 4

- Constricts food in lumen
- Longitudinal
 - Outermost
 - Always present
 - Pushes along food in lumen
- Oblique
 - Only in stomach -- innermost
 - Pushes food in different direction from longitudinal
- c. Myenteric (Auerbach's) plexus
 - Nervous tissue -- between circular & longitudinal
 - Coordinates muscular contractions
- 4. Serosa or adventitia
 - a. General
 - Outer covering
 - Interface between organ & surroundings
 - b. Serosa
 - Covers abdominal organs
 - Serous membrane -- simple squamous
 - Part of visceral peritoneum
 - Secretes serous fluid -- lubrication
 - c. Adventitia
 - Covers thoracic & pelvic organs
 - Connective tissue

Variable thickness & composition

Digestion

- A. Concept
 - 1. All changes in & processing of ingested food which render it absorbable
 - 2. Both physical & chemical aspects
- B. Physical
 - 1. Meaning -- changes & processing which do not involve chemical reactions
 - 2. Examples
 - a. Chewing
 - b. Mixing
 - c. Lubrication & moistening
 - d. Movement (e.g. peristalsis)
 - e. Egestion
 - f. Release of secretions
 - g. Ingestion
- C. Chemical
 - 1. Hydrolysis
 - a. Meaning
 - Enzymatic splitting of compound molecule via water addition
 - Restores H₂O (H⁺ & OH⁻) lost during dehydration (condensation) bonding to form compound molecule (e.g. polymer) from smaller components (e.g. monomers)

- b. Significance -- most common reaction type
- 2. Non-hydrolytic reactions
 - a. Account for very few reactions
 - b. E.g. -- fat emulsification

D. Control

- 1. Nervous
 - a. Local -- enteric
 - Submucosal & myenteric plexuses
 - Can function independently of CNS
 - b. Central -- via visceral (autonomic) nervous system
 - General
 - Via visceral (autonomic) nervous system
 - Modifies inherent enteric control
 - Parasympathetic -- stimulatory
 - Sympathetic -- inhibitory
- 2. Hormonal [most details later]
 - a. Local enteroendocrine
 - b. Typical distant source
- 3. Food itself
 - a. Chemical -- e.g. pH effect on enzyme activity; fats
 - b. Mechanical -- e.g. pressure effect on muscular action

<u>Absorption</u>

A. Concept - transport of fully chemically digested nutrient molecules/ions from the lumen of the digestive tract through the lining epithelium into blood and lymphatic vessels

B. Locations & Relative Amounts

- 1. Mouth -- none
- 2. Pharynx -- none
- 3. Esophagus -- none
- 4. Stomach -- slight
- 5. Small intestine -- overwhelming majority
- 6. Large intestine -- moderate
- 7. Accessory organs -- none

B. Mechanisms

- 1. Passive
 - a. Diffusion
 - b. Facilitated diffusion
- 2. Active transport

MOUTH

Boundaries

- 1. Teeth & lips -- anterior & lateral
- 2. Palate -- superior & lateral (partial)

- 3. Tongue -- inferior
- 4. Fauces
 - a. Posterior
 - b. Opening into pharynx
- 5. Buccal (cheeks) lateral

Palate

- A. Hard
 - 1. Location & relations
 - a. Anterior palatal portion -- roof of mouth
 - b. Anterior floor of nasal passages
 - 2. Structure
 - a. Bone
 - b. Stratified squamous epithelium -- some keratinized
 - 3. Function -- keeps nasal passages open, despite pressures from chewing & other mouth movements
- B. Soft
 - 1. Location & relations
 - a. Posterior portion -- roof of mouth
 - b. Posterior floor of nasal passages
 - 2. Structure
 - a. Mucosa -- non-keratinized stratified squamous
 - b. Muscle -- skeletal
 - c. Connective -- various

- 3. Function -- moves up during swallowing to close off posterior nares
- 4. Uvula
 - a. Hangs from mid-posterior edge
 - b. Core of skeletal muscle
 - c. Function -- initiate swallowing reflex & nasal closure
- C. Glands [later]

Tongue

- A. General
 - 1. Oral portion
 - a. Within mouth cavity
 - b. Anterior two-thirds
 - 2. Pharyngeal portion
 - a. Within oropharynx
 - c. Posterior one-third

B. Structure

- 1. Mostly skeletal muscle -- bundles in many directions
- 2. Mucous membrane covering
 - a. Non-keratinized stratified squamous -- most
 - b. Keratinized stratified squamous -- tip
- 3. Papillae
 - a. Bumps & projections

- b. 4 kinds (shapes)
 - Unevenly distributed
 - Increase surface area
- 4. Frenulum
 - a. Mid-inferior membrane
 - b. Attaches tongue to floor of mouth
- 5. Glands [later]
- 6. Taste buds
 - a. Embedded in mucosa -- dorsal & lateral
 - b. Also in soft palate and epiglottis
- C. Functions
 - 1. Taste -- smell involved, also
 - 2. Chewing -- positions food between teeth
 - 3. Mixing food
 - a. With saliva
 - b. With mucus
 - c. Some breakup from pushing against surfaces
 - 4. Lubrication of food -- mucous glands
 - 5. Hydrolysis -- salivary glands
 - 6. Deglutition -- swallowing
 - 7. Speech
 - 8. Immunity -- lymphatic tissue [details late]
 - 9. Touch tactile receptors

Lymphatic Tissue

- A. General
 - 1. Extent -- extensive compared with rest of body
 - 2. Purpose -- first line of defense
- B. Tonsils
 - 1. Macroscopic -- actually within oropharynx
 - a. Lingual
 - b. Palatine
 - 2. Microscopic -- thousands, embedded in mucosa
 - a. Lingual
 - b. Palatine
 - c. Buccal
 - d. Gingival
 - e. Labial

Salivary Glands

- A. Macroscopic
 - 1. Parotid
 - a. Largest
 - b. Duct -- opens at 2nd upper molar
 - 2. Submandibular (submaxillary)

- a. Medium-size
- b. Duct -- opens beside base of frenulum
- 3. Sublingual
 - a. Smallest
 - b. Ducts
 - 10-20
 - Open floor of mouth separately or join submandibular duct
- B. Microscopic
 - 1. Thousands -- embedded in mucosa
 - 2. Locations
 - a. Lingual
 - b. Palatine
 - c. Buccal
 - d. Gingival
 - e. Labial
- C. Functional Structure
 - 1. Acini (alveoli)
 - a. Secretory units
 - b. Ovoid, hollow, thick-walled
 - c. Lining cells produce secretion
 - d. Myoepitheliocytes -- release & move secretion
 - e. Organization

Digestive -- 13

- Only a few in microscopic
- Macroscopic -- lobular subdivisions
- 2. Ducts
 - a. Intercalated -- from each acinus
 - b. Others
 - Junction of two or more intercalated
 - Larger glands have tree-like structure with several to many branching levels, following lobular structure
 - Secretory duct cells some
- 3. Variations -- whole gland or individual acini
 - a. Mucus-secreting
 - Glycoproteins + water + electrolytes
 - Lubricates, moisturizes, protects
 - b. Serous
 - Chief (zymogenic) cells more granular
 - Water, ions (e.g. pH buffering) & enzymes
 - c. Sero-mucous
 - Intermediate chief cell type
 - Both mucous & serous secretions
- D. Secretion -- saliva [details later]
- E. Control
 - 1. Nervous -- parasympathetic
 - a. Salivatory center -- medulla
 - b. Satiety center -- hypothalamus

- 2. Causes (stimuli)
 - a. Mechanical -- anything in mouth
 - b. Smell
 - c. Taste
 - d. Visual
 - e. Hearing
 - e. Thoughts

Teeth

- A. Location
 - 1. Embedded in maxilla & mandible
 - 2. Alveoli -- sockets
 - 3. Gingiva -- gums
 - a. Covers bone & joins tooth
 - b. Continuous with general oral mucosal lining

B. Structure

- 1. Dentin
 - a. Main substance
 - Calcified connective tissue
 - Gives overall shape
 - b. Odontoblasts
 - Adjacent to pulp cavity
 - Secrete dentin

- 2. Enamel
 - a. Covers dentin of crown
 - b. Ameloblasts
 - Die before tooth erupts
 - Secrete enamel
 - c. Structure
 - 98% mineralized -- very hard
 - Calcium salts
 - Arranged in parallel hexagonal prismatic rods
- 3. Cementum
 - a. Thin mineralized connective tissue
 - b. Tightly adhering layer around dentin of root
 - c. Substrate for intimate attachment of surrounding periodontal ligaments
- 4. Periodontal ligaments
 - a. Dense fibrous connective tissue
 - b. Anchor tooth to surrounding bony alveolus
 - c. Shock absorption -- give somewhat with stresses
- C. Types & Age Changes
 - 1. Four types
 - a. Incisors -- biting & tearing
 - b. Canines (cuspids) -- biting & tearing
 - c. Premolars (bicuspids) -- grinding

- d. Molars -- crushing & grinding
- 2. Two sets
 - a. First -- temporary
 - 20 teeth -- 4-I/2-C/4-M @ jaw
 - Erupt 7.5-24 months
 - Shed 7-12 years
 - b. Second -- permanent
 - 32 teeth -- 4-I/2-C/4-P/6-M @ jaw
 - Erupt 7-24 years

Digestion

- A. Physical
 - 1. Mastication
 - a. Chewing
 - b. Increases surface area
 - 2. Mixing with saliva
 - a. Softening
 - b. Lubrication
 - c. Exposure to chemical digestive substances
 - 3. Deglutition -- swallowing
 - a. Reflex initiated -- continues in pharynx & esophagus
 - b. Bolus -- food/saliva mass

- B. Chemical
 - 1. Composition of saliva -- secreted by acini, unless otherwise noted
 - a. Water -- 99.5% volume
 - Medium for other components
 - Softening/physical breakup
 - Excreted -- some
 - b. Mucus
 - Lubrication & softening
 - Protection
 - Physical -- coats surfaces
 - pH -- buffers against excess acid or base
 - c. Bicarbonate (HCO₃⁻) -- buffers pH to 6-7
 - Optimum pH for hydrolysis
 - Very acidic pH would promote enamel erosion
 - Secreted by duct cells -- exchanged for Cl⁻
 - d. Potassium (K^+)
 - Excreted
 - Secreted by duct cells -- exchanged for Na⁺
 - e. Bacteriostatic substances & action
 - Washing action -- total saliva
 - Antibodies
 - Specific for oral bacteria
 - From duct cells

Digestive -- 18

- Proteolytic
 - E.g. lysozyme
 - From duct cells
- f. Enzymes
 - Ptyalin (salivary amylase)
 - Majority
 - Hydrolyses starches [details below]
 - Others
 - Trace amounts -- disputed action
 - e.g. maltase, lipase, protease
- 2. Starch hydrolysis
 - a. Ptyalin hydrolyses starches
 - Amylose, amylopectin, glycogen
 - Progressive breakdown to smaller units
 - Dextrins -- oligosaccharides of 5-8 glucose residues
 - Maltose -- disaccharide
 - b. Efficiency of ptyalin
 - Basically depends on time in mouth
 - Remains active 30 min. (max.) in stomach, until bolus breaks up completely
 - 70% of bread/potato starch hydrolyzed
 - Other amylases finish process in small intestine

PHARYNX

<u>Structure</u>

- A. Basic
 - 1. Location -- base of skull
 - 2. Shape
 - a. Musculo-membranous tube
 - b. Flattened anterior to posterior

B. Mucosa

- 1. Non-keratinized stratified squamous in digestive regions
- 2. Pseudostratified in respiratory regions

C. Muscles

- 1. Constrictors -- superior, middle, inferior
- 2. Others -- join with soft palate (e.g.)
- D. Glands -- mucus-producing
- E. Regions
 - 1. Nasopharynx
 - a. Entirely respiratory
 - b. Openings
 - From posterior nares
 - Eustachian tubes

- Into oropharynx with fauces
- 2. Oropharynx
 - a. Dual respiratory & digestive
 - b. Continues inferiorly as laryngopharynx
- 3. Laryngopharynx
 - a. Dual respiratory & digestive
 - b. Adjacent to glottis
 - c. Joins esophagus inferiorly

Function -- Deglutition (Swallowing)

- A. First Phase
 - 1. Voluntary -- conscious control
 - 2. Tongue elevates & pushes bolus in tip to posterior wave through fauces into oropharynx
 - 3. Hyoid elevated & moved forward
- B. Second Phase
 - 1. Involuntary -- unconscious, automatic control
 - 2. Soft palate elevated & held against posterior wall, to block nasopharynx
 - 3. Glottis blocked
 - a. Larynx elevated & moved forward
 - b. Epiglottis folded laterally
 - c. Vocal folds come apposed (come together)
 - 4. Superior & middle constrictors push bolus down past glottis

- C. Third Phase
 - 1. Involuntary
 - 2. Inferior constrictor squeezes bolus into esophagus
- D. Control
 - 1. Deglutition center in lower pons & medulla
 - 2. Sensory input from tactile receptors in soft palate & oropharynx near fauces

ESOPHAGUS

<u>Structure</u>

- A. Basic
 - 1. 10 inches long (25cm)
 - 2. Continuation of G-I tract from pharynx to stomach
 - 3. Posterior to trachea, lungs & heart
 - 4. Mostly in midline -- lower part passes slightly left
 - 5. Runs through diaphragm to join stomach
- B. Regions
 - 1. Cervical
 - a. Within neck
 - b. Joins laryngopharynx

- 2. Thoracic
 - a. Within mediastinum
 - b. Longest
- 3. Abdominal
 - a. Below diaphragm
 - b. Joins cardiac stomach
- C. Wall
 - 1. Four basic layers [previously covered]
 - 2. Specializations
 - a. Mucosa -- non-keratinized stratified squamous
 - b. Submucosa -- numerous alveolar-shaped mucous glands
 - c. Muscularis externa -- circular & longitudinal
 - Skeletal in cervical region
 - Combination skeletal & smooth in thoracic
 - Smooth in abdominal
 - d. Adventitia -- except abdominal region

Function

- A. Concept
 - 1. Peristalsis -- wave-like, rhythmic, sequential motion along organ's length to propel bolus down into stomach
 - 2. Continuation of deglutition reflex from pharynx
 - 3. Not limited to esophagus -- small & large intestines, also

B. Mechanism

- 1. Basic -- alternating coordinated contractions of circular & longitudinal muscle layers
 - a. Circular
 - Precise narrow portion of layer first contracts just <u>above</u> bolus
 - Prevents bolus going wrong direction
 - b. Longitudinal
 - Starts just <u>below</u> constriction from circular
 - Contracts around bolus to squeeze downward
- 2. Continuation
 - a. From repeats of circular/longitudinal coordinated contractions
 - b. Massaging action occurs lower each time, until stomach reached
- 3. Stomach entry
 - a. Lower 1-2 in. (2.5-5cm) has sphincter-like thickened circular muscle
 - b. Relaxation at appropriate time for bolus to enter
 - c. Closure at other times helps protect from highly acidic stomach contents
- 4. Role of different muscle types
 - a. Skeletal contracts faster than smooth
 - b. Helps insure propulsion downwards
- 5. Role of gravity
 - a. Swallowing can occur in any body position
 - b. Gravity provides some assistance

- C. Control
 - 1. Local
 - a. Myenteric plexus
 - b. Produces basic mechanism
 - c. From physical detection of & responses to presence of bolus as it progresses downwards
 - 2. Central
 - a. Nervous impulses from deglutition center
 - b. Overall control & coordination with pharyngeal stage of deglutition

STOMACH

Structure

- A. General
 - 1. Shape -- flattened J-shaped dilation of G-I tract
 - 2. Orientation
 - a. Flat surfaces oriented obliquely
 - b. Lesser curvature to the right & turned superiorly
 - c. Greater curvature to the left & oriented inferiorly
 - 3. Capacity -- about 1 L.
- B. Regions & Openings
 - 1. Cardia
 - a. Cardiac orifice opening from esophagu

Digestive -- 25

- b. Cardiac region very small adjacent area
- 2. Fundus
 - a. Bulge superior & to the left of cardia
 - b. Function & microscopic structure same as body
- 3. Body
 - a. Inferior to fundus
 - b. Majority of stomach
- 4. Pylorus
 - a. Inferior narrowed portion, joining duodenum
 - b. Pyloric orifice surrounded by pyloric sphincter
- C. Wall Modifications
 - 1. Mucosa
 - a. Simple columnar epithelium
 - b. All cells secrete mucus -- non-goblet, though
 - c. Rugae
 - Prominent, irregular ridges
 - Provide increased surface area
 - Flatten out as stomach fills
 - Involves submucosa as well
 - d. Gastric pits -- openings into gastric glands [below]
 - 2. Submucosa
 - a. Thick & rather loose connective tissue
 - b. Permits extreme flexibility to give during filling expansion, providing gliding surface for flattening of rugae

- c. Involves mucosa as well
- 3. Muscularis externa -- extra, innermost oblique layer
- 4. Serosa
 - a. Greater omentum
 - b. Lesser omentum

Glands

- A. General
 - 1. Gastric pits
 - a. Mucosal surface pock-marks
 - b. Deeper in mucosa change into gastric glands
 - c. General epithelial lining continues until glands
 - 2. Gastric glands
 - a. Run through rest of mucosa up to muscularis mucosae
 - b. Tubulo-acinar in shape
 - c. 3 types [below]
 - 3. Gastric juice -- collective secretions of all glands and from general lining (including pit cells)

B. Cardiac Glands

- 1. Only in cardia
- 2. General lining cells continue relatively unchanged
- 3. Secrete mucus
- C. Fundic Glands
 - 1. In fundus & body -- most numerous

- 2. Relation to gastric pits
 - a. Each pit has up to 3 smaller branches -- secondary pits
 - b. Each secondary pit has up to 3 actual fundic glands
- 3. Cell types
 - a. Mucus-secreting -- in upper portions & pits
 - b. Parietal (oxyntic)
 - c. Chief (zymogenic or peptic) -- secrete most gastric juice components
- D. Pyloric Glands
 - 1. Within pylorus
 - 2. Appear similar to cardiac glands
 - 3. Cell types
 - a. Mucus-secreting
 - b. Chief

Gastric Juice & Digestion

- A. Water
 - 1. 99.5%
 - 2. From chief cells
 - 3. Same functions as in saliva
- B. Hydrochloric Acid
 - 1. Secreted by parietal cells

- 2. pH
 - a. Upon secretion -- 0.9
 - b. When diluted within lumen -- 2.5
 - c. Thick mucous layer protects stomach wall
- 3. Functions
 - a. Activation of enzymes
 - b. Proper environment for enzyme action
 - c. Denature ingested proteins -- they swell to increase surface area, exposing more peptide bonds for hydrolysis
 - d. Bacteriostatic -- very effective
- C. Pepsinogen
 - 1. Secreted by chief cells
 - 2. Inactive form of enzyme -- zymogen form, generically
 - 3. Activation
 - a. HCI converts to active pepsin
 - b. Protective mechanism to protect chief cells
 - 4. Action
 - a. A protease (proteinase)
 - b. Hydrolyses proteins to various forms
 - Mostly smaller polypeptides
 - Some small peptides
 - Very little free amino acids
 - 5. Importance
 - a. Not essential -- small intestinal proteases are varied &

Digestive -- 29

abundant

- b. Does initiate complicated protein digestion
- D. Lipase
 - 1. Secreted by chief cells
 - 2. A tributylase -- hydrolyses tributin (butterfat)
 - 3. Weak & not essential in this organ

E. Gastric Amylase

- 1. Secreted by chief cells
- 2. Identical in structure & function with ptyalin
- 3. Little or no importance -- inhospitable pH

F. Mucus

- 1. Secreted by all glands & general lining epithelium
- 2. More viscous than usual

3. Functions

- a. Protection
 - From acidity
 - Forms thick coating on wall
- b. Lubrication
- G. Intrinsic Factor
 - 1. Secreted by parietal cells

- 2. Binds with vitamin B₁₂ for later absorption
- 3. Stomach's only absolutely essential secretion [conceptually speaking]

Absorption

- 1. Performed by general epithelial lining
- 2. Very restricted
 - a. Mucous layer & tight junctions between cells
 - b. Only alcohol and some drugs -- lipid-soluble
 - c. Some water

Regulation of Secretion

- A. Nervous
 - 1. Sources
 - a. Brain -- parasympathetic stimulation
 - b. Enteric -- local
 - 2. Stimuli
 - a. Brain -- same as salivary
 - b. Enteric
 - Distention
 - Tactile
 - Chemical -- especially protein in food & acid secretion

- 3. Effects
 - a. Gastric juice secretion -- all components
 - b. Hormone release [details below]
 - c. Movements [details later]

B. Hormonal

- 1. General
 - a. Part of very complicated & interrelated gastro-enteropancreatic (GEP or just entero-) endocrine system
 - b. Recepto-secretory cells are neuroendocrine type also termed enteroendocrine
 - c. Polypeptides, peptides or amines
- 2. Gastrin
 - a. From G-cells of pyloric glands & duodenal glands
 - b. Stimuli for secretion
 - Nervous
 - Presence of food in stomach
 - Small intestinal -- e.g. undigested proteins
 - c. Effects
 - Release of gastric juice -- mostly acid
 - Muscular movements -- general churning
- 3. Histamine
 - a. From mucosal mast cells (?)
 - b. Stimulus -- acidity
 - c. Effect -- reinforces gastrin & nervous effects

4. Inhibitory hormones

Intestinal origin

- Secretin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), and others - from mucosa
- Urogastrone from duodenal glands inhibits HCI
- Stimuli -- food with acidity, fats, digested proteins or general irritation
- Effects
 - Inhibit gastrin secretion
 - Slow stomach emptying

Phases of Gastric Secretion & Motility

- A. Cephalic
 - 1. Timing
 - a. Before food reaches stomach
 - b. Lasts only several minutes
 - 2. Stimuli
 - a. Before eating -- sight, smell & thoughts
 - b. During eating -- tactile & taste
 - 3. Cause -- parasympathetic impulses
 - 4. Effects -- some secretion of gastric juice & gastrin
- B. Gastric
 - 1. Timing
 - a. When food reaches stomach
 - b. Lasts for about 3 hours

- 2. Stimuli-- direct presence of food
- 3. Causes -- parasympathetic, enteric & gastrin
- 4. Effects
 - a. More gastric juice than cephalic
 - b. General motility for mixing
- C. Intestinal
 - a. Timing
 - a. When small intestine receives food -- now chyme
 - b. Lasts longer than gastric phase
 - b. Stimuli -- duodenal distention & chemicals in food
 - c. Causes -- parasympathetic, enteric & hormonal
 - d. Effects
 - a. Decreased gastric juice
 - b. Decreased motility & emptying

SMALL INTESTINE

Structure

- A. General
 - 1. About 22 feet long x 1 inch diameter (6.8M x 40mm)
 - 2. Suspended from posterior abdominal wall
 - a. By mesentery -- extension of covering serosa
 - b. Continuous with lining parietal peritoneum

- B. Regions & Openings
 - 1. Duodenum
 - a. Shortest -- 10 inches long (25cm)
 - b. C-shaped
 - c. Retro-peritoneal -- against body wall
 - d. Opening from pyloric stomach
 - e. Opening from bile/pancreatic ducts -- papilla
 - 2. Jejunum
 - a. About 8 feet long (2.5M)
 - b. Irregular coils free within abdominal cavity
 - 3. Ileum
 - a. Longest -- over 12 feet long (3.7M)
 - b. Unpredictably coiled like jejunum
 - c. Ends at juncture with large intestine
- C. Wall Modifications
 - 1. General
 - a. To increase surface area -- about 300 M²
 - b. If same surface, but smooth -- 13,700 feet long (4.2Km)
 - 2. Circular folds (plicae circulares)
 - a. Like corrugations -- project about 8mm into lumen
 - b. Permanent -- do not flatten out like rugae
 - c. Decrease in number in jejunum & few in ileum
 - 3. Villi

- a. Finger-like projections -- 0.5-1.0 mm into lumen
- b. Cover circular folds & low areas between
- c. Different shapes in each region
- d. Fewest in ileum
- e. Covered with simple columnar epithelium
 - Absorptive cells -- most numerous
 - Goblet cells
- f. Vascular
 - Extensive capillaries
 - Central lacteal
- 4. Microvilli (brush border)

Several thousand submicroscopic projections from each absorptive cell

Glands

- A. Intestinal (Crypts of Lieberkühn)
 - 1. Open into lumen as gastric glands do -- at bases of villi
 - 2. Single tubular glands which run through rest of thickness of mucosa
 - 3. Cells
 - a. Upper & most of length -- continuation of absorptive/goblet lining
 - b. Lower -- chief (different from gastric)
- B. Duodenal (Brunner's)
 - 1. Only within submucosa of duodenum

- 2. Alveolar -- empty into crypts mucus
- 3. Reason acidic chime from stomach
- C. Pancreatic Acini [only included here for convenience]
 - 1. Compound gland -- similar layout to macro-salivary
 - 2. Secretions from 2 sources
 - a. Acinar chief (zymogenic) type cells
 - c. Duct cells -- both intercalated & larger
- D. Gallbladder/Liver -- Bile

Chemical Digestion

- A. Pancreatic Juice
 - 1. Water
 - a. 98% by volume
 - b. From duct cells
 - c. Functions
 - Medium for other components
 - Some excretion
 - 2. Bicarbonate
 - a. From duct cells
 - b. Buffers pH to necessary 8.0
 - 3. Pancreatic amylase
 - a. From chief cells -- amylopsin

- b. Contrasts with ptyalin
 - More & wider range of activity
 - More time for hydrolysis
- c. Functions
 - Finishes what ptyalin started
 - Can hydrolyze most carbohydrates
 - Result
 - Disaccharides -- most
 - Trisaccharides
- 4. Lipases
 - a. From chief cells
 - b. All types of lipids hydrolyzed
 - c. Steapsin (pancreatic lipase) -- most general
 - Secreted as inactive steapsinogen
 - Activated by bile salts [later]
 - Fats to fatty acids & monoglycerides
 - d. Cholesterol esterase
 - e. Phospholipase
- 5. Proteases
 - a. From chief cells
 - b. Trypsin
 - Secreted as inactive trypsinogen
 - Activated by enterokinase from intestinal glands & previously activated trypsin

- Most proteins & polypeptides hydrolyzed to very small peptides
- c. Chymotrypsin
 - Secreted as inactive chymotrypsinogen
 - Activated by trypsin
 - Identical action with trypsin -- less, though
- d. Carboxypeptidase
 - Secreted as inactive procarboxypeptidase
 - Activated by trypsin
 - Splits some free amino acids from peptide ends
- e. Others
 - More specialized
 - e.g. -- collagenase & elastase
- f. Trypsin inhibitor
 - Formed within chief cells
 - Further protection against activation of trypsin & others intracellularly & in ducts
- 6. Nucleases
 - a. From chief cells
 - b. Hydrolyze nucleic acids -- DNA & RNA
 - c. Deoxyribonuclease & ribonuclease -- depolymerize
 - d. Nucleotidases & phosphatases -- finish

<u>Bile</u>

- A. Water
 - 1. 85% of volume
 - 2. Medium & excreted

B. Pigments

- 1. Bilirubin -- from heme destruction
- 2. Excreted
- C. Cholesterol -- excretion of excess
- D. Bile Salts
 - 1. Glycocholic (cholic acid + glycine) & taurocholic (taurine + glycine) acids
 - 2. Functions
 - a. Buffer
 - b. Emulsify fats
 - Not hydrolysis
 - Breakup of large insoluble particles
 - c. Activate steapsinogen
 - d. Enhance absorption of digested lipids -- micelles
 - e. Permit vitamin K and D absorption -- colon
 - f. Stimulate peristalsis

Intestinal Juice

- A. Sources
 - 1. Intestinal glands
 - 2. Duodenal glands
 - 3. Goblet cells of general lining epithelium

B. Components

- 1. Water
- 2. Intestinal amylase
- 3. Mucus
- 4. Enterokinase [covered above]
- 5. Lysozyme from intestinal glands -- antibacterial

Final Hydrolysis

- A. Location
 - 1. Microvilli
 - a. Enzymes within absorptive cell membrane on villi
 - b. Technically not secreted
 - c. Site of absorption as well -- efficient
 - 2. Some authorities differ -- say enzymes are released free into lumen when cells normally die & slough off
- B. Enzymes
 - 1. Disaccharidases (saccharidases)
 - a. Maltase -- hydrolyses maltose

- b. Sucrase -- hydrolyses sucrose
- c. Lactase -- hydrolyses lactose
- 2. Aminopeptidases -- finish splitting small peptides into dipeptides, tripeptides and some amino acids
- 3. Phosphatases -- split phosphate from many molecules
- 4. Intestinal lipase -- splits fatty acids from glycerol
- 5. Enterokinase -- trypsin activator [previously covered]

Absorption

- A. Regional Differences
 - 1. Digested proteins, carbohydrates, lipids & nucleic acids
 - a. Most absorbed in duodenum & first half of jejunum
 - b. Rest of jejunum & ileum sort of a reserve
 - 3. Ileum has special absorptive roles
 - a. Vitamin B₁₂ (bound with intrinsic factor)
 - b. Most water & electrolytes
 - c. Most bile salts

B. Absorption into Villus Capillaries

- 1. Monosaccharides
 - a. Most by active transport from lumen into absorptive cells -- indirect, co-transport (coupled) with Na $^+$
 - Na⁺ continually diffuses into cells, due to steep concentration gradient being maintained by outward active transport

- Monosaccharides follow inward moving Na⁺
- b. A few transported by facilitated diffusion
- c. Diffusion from absorptive cells into capillaries
- 2. Peptides & amino acids
 - a. Most by co-transport with Na⁺
 - b. Some by facilitated diffusion
- 3. Digested nucleic acids -- active transport
- 4. Vitamins
 - a. Fat-soluble [with fats -- below]
 - b. Water-soluble
 - B₁₂ -- active transport
 - Rest of B complex & C -- diffusion

5. Water

- a. Mechanism
 - Diffusion
 - Follows osmotic gradient created by loss of lumen solute from transport of other substances
- b. Sources & 24 hr. amounts in chyme
 - Ingested -- 1500 ml
 - Saliva -- 1500 ml
 - Gastric juice -- 2000 ml
 - Pancreatic juice -- 1500 ml
 - Bile -- 500 ml
 - Intestinal juice -- 2000 ml

- c. Amounts -- 24 hr.
 - Total in small intestine -- 9000 ml
 - Absorption -- 7500 ml
 - Feces only has 150 ml -- colon absorption

6. Electrolytes

- a. Sodium -- co-transport & active transport
- b. Potassium -- diffusion, from gradient produced by active transport of other ions
- c. Calcium -- active transport
- d. Magnesium -- active transport
- e. Chloride -- diffusion, following sodium
- f. Bicarbonate -- diffusion & facilitated diffusion
- g. Phosphate, sulfate & nitrate -- active transport

C. Absorption into Villus Lacteals

- 1. Substances absorbed
 - a. Digested fats
 - b. Fat-soluble vitamins -- A, D, E & K

2. Mechanism

- a. Micelles -- complex of several substances
 - Fatty acids
 - Monoglycerides
 - Vitamins
 - Cholesterol -- fatty acids removed

- Bile salts
- b. Absorption
 - Micelles are water soluble
 - Adhere to microvillus membrane
 - All except bile salts diffuse into cell
 - Bile salts reusable to form more micelles
- c. Cyclomicrons -- a lipoprotein complex
 - Reconstituted fats & cholesterol
 - Phospholipids
 - Protein
- d. Passage into lacteals
 - Cyclomicrons soluble in cell membranes
 - Diffuse into lacteals

Regulation of Secretion

- A. Nervous
 - 1. Local
 - a. Mechanical & chemical presence of chyme
 - b. Stimulates intestinal juice
 - 2. Central
 - a. Parasympathetic impulses
 - b. Targets
 - Pancreas to stimulate enzyme release from acini
 - Gallbladder help promote emptying

B. Hormonal

- 1. Secretin
 - a. Part of entero-endocrine system
 - b. Source -- receptosecretory cells of duodenal mucosa
 - c. Stimulus -- acidic chyme from stomach
 - d. Effect
 - Water & bicarbonate from pancreatic ducts
 - Inhibits gastric secretion & motility
- 2. Cholecystokinin (CCK) or cholechystokinin-pancreozymin
 - a. Source -- duodenal mucosa
 - b. Stimulus -- lipids & partially digested proteins in chyme
 - c. Effects
 - Enzymes from pancreatic acini
 - Bile from gallbladder
 - Inhibits gastric secretion & motility
- 3. Enterokrinin
 - a. Source -- duodenal mucosa
 - b. Stimulus -- acidic chyme
 - c. Effect -- buffering mucus from intestinal glands
- 4. Gastric inhibitory peptide [previously covered]
- 5. Gastrin [previously covered]
- 6. Glucagon (enteroglucagon)
 - a. Source -- duodenal mucosa

- b. Stimulus -- high glucose concentration in chyme
- c. Effect -- insulin release from pancreatic islets

Physical Mechanisms

- A. Peristalsis [previously covered]
- B. Enterogastric Reflexes
 - 1. Concept
 - a. Cooperative nervous signals between stomach & small intestine
 - b. Both enteric & central
 - 2. Purposes
 - a. Regulate stomach emptying
 - b. Stimulate intestinal peristalsis
 - 3. Types
 - a. Stimulation of stomach emptying
 - b. Inhibition of stomach emptying
- C. Segmentation
 - 1. Concept -- compartmentalization of chyme within different segments along intestine
 - 2. Purpose -- retain chyme for mixing contractions & digestion for adequate periods before being moved on
- D. Emptying
 - 1. Relaxation of ileocecal valve from pressure gradient
 - 2. Can be inhibited by reflex from colon if it is full

LARGE INTESTINE

<u>Structure</u>

A. Size -- about 8 feet long x 2.5 inches diameter (2.5M x 6.25cm)

B. Regions & Openings

- 1. Cecum
 - a. Blind pouch for 2 inches (5cm) inferior to ileocecal valve
 - b. Appendix extends from this
- 2. Colon
 - a. Most of large intestine's length
 - b. Regions
 - Ascending
 - Transverse
 - Descending
 - Sigmoid (pelvic)
- 3. Rectum -- from sigmoid colon, posterior, about 6 in. (15cm)
- 4. Anal canal
 - a. Terminal region of 1.5 in. (3.75cm)
 - b. Ends with anus (anal opening)
 - c. Two sphincters control anus
- C. Wall Modifications
 - 1. Mucosa
 - a. Not smooth -- nothing like rugae or circular folds
 - b. Lining epithelium

- Goblet cells -- more numerous
- Absorptive cells
- c. Intestinal glands (crypts)
 - Structurally like small intestinal
 - General lining epithelium continued
- 2. MUscularis externa
 - a. Taeniae coli
 - Three narrow bands of longitudinal layer
 - Shorter than rest -- cause gathering to cause pouching out of haustrae
 - b. Plicae semilunares
 - Periodic circular layer constrictions, like loose sphincters
 - Define boundaries between haustrae

Functions

- A. Normal Microflora
 - 1. Concept -- beneficial microbial population
 - 2. Benefits
 - a. Decomposition of indigestible materials for easier passage
 - b. Synthesis -- by-products of their metabolism
 - Vitamins -- K & some B complex
 - Some amino acids
 - c. Protection against noxious microorganisms

- B. Secretions
 - 1. Mucus -- more lubrication due to drier feces
 - 2. Bicarbonate -- buffering

B. Absorption

- 1. Synthesized vitamins & amino acids
- 2. Water
 - a. About 1350 ml in 24 hr.
 - b. Only 150 ml lost in feces
- 3. Electrolytes
 - a. Sodium -- active transport
 - b. Chloride -- follows sodium passively
- 4. Most of bile salts not absorbed in small intestine

C. Movements

- 1. Peristalsis -- very slow
- 2. Segmentation
 - a. Haustrae assist
 - b. Slow kneading movements in each segment
- 3. Mass movement
 - a. <u>En masse</u> movements from each segment to more distal segment
 - b. Feces in rectum (final segment) will initiate defecation reflex
 - c. Periodic -- few times per day
- D. Defecation (Egestion)

- 1. Internal anal sphincter
 - a. Smooth muscle
 - b. Rectum reaches threshold level of fullness from mass movement
 - c. Pressure receptors initiate reflex relaxation
 - d. Constriction can return if external sphincter does not relax
- 2. External anal sphincter
 - a. Skeletal muscle
 - b. Conscious relaxation for defecation
 - c. Constriction maintained if defecation not desired
- 3. Actual defecation
 - a. Longitudinal layer of rectum contracts to increase pressure
 - b. Intra-abdominal pressure increased by contraction of abdominal wall muscles