INTRODUCTION

System Concept

- A. Functional
 - 1. One of 3 overall controlling / regulating systems
 - a. Nervous much overlap with endocrine
 - b. Cardiovascular different context & scope; physical, not functional
 - 2. Accomplished via hormones

B. Structural

- 1. Endocrine glands hormone source
- 2. Lack of relationship
 - a. Glands scattered throughout body
 - b. Most lack <u>physical</u> interconnection
 - c. Exception to all other organ systems
- 3. Relationships
 - a. Glands <u>functionally</u> interrelate
 - b. Via dissemination of hormones

<u>Hormones</u>

- A. Concept
 - 1. Chemical substances endocrine glands synthesize & secrete
 - 2. Released in small, variable amounts
 - 3. Transported by blood
 - 4. Produce metabolic changes in distant target cells

B. Chemical Signaling

There are a number of methods involved in cellular chemical communication.

- 1. Intracrine this is self-regulation within a cell
- 2. Autocrine this occurs with one cell, but the response involves a membrane receptor
- 3. Juxtacrine this involves the membranes of two adjacent cells
- 4. Paracrine this involves one cell affecting the general immediate surrounding area
- 5. Neurocrine this involves a "hormone" from an axon ending, targeting a local area
- 6. Neuroendocrine this involves a true hormone in all respects, but from an axon ending and not a typical endocrine organ
- 7. Endocrine this involves hormones from the endocrine system

C. Importance

- 1. Chemical integrator & coordinator of entire body
- 2. Homeostasis balance of vital life processes
- 3. Effects occur in seconds or days last for hours or years
- 4. Excesses or deficiencies of severe consequence
- D. Structure
 - 1. General not all in one organic chemical grouping
 - 2. Specific one of the following, varying in size & complexity
 - a. Protein
 - b. Polypeptide
 - c. Peptide
 - d. Amine
 - e. Glycoprotein

f. Steroid

E. Secretion

- 1. Proteins and derivatives as an example
 - a. First form preprohormone
 - Within secretory cell
 - Larger than final form
 - b. Second form prohormone from cleavage of first form
 - c. Final form hormone
 - Golgi cleaves second form
 - Compacted into secretory vesicles (granules)
- 2. Storage
 - a. Most within secretory cells
 - b. Extracellular within vesicles (thyroid and adrenal medulla)
- E. Principles of Action
 - 1. Change reaction rates
 - 2. Catalytic in effect
 - a. Enzymatic, but not enzymes [explained later]
 - b. Disproportionate amount : response
 - 3. Specificity
 - a. Hormone itself
 - Specific stimulus for release
 - Varies with stimulus amount & nature
 - b. Target tissue
 - Specific tissue or same reaction in different tissues

- Specific receptors for each hormone
- Rare exceptions
- 4. Constantly present fluctuate with need
- 5. Continuous inactivation to prevent accumulation, by 2 methods
 - a. Disabled
 - b. Excreted
- 6. May influence each other
 - a. Stimulation or inhibition
 - b. Via influence on synthesis, secretion & / or activity
- F. Mechanisms of Action
 - 1. General recall they are "enzymatic"
 - a. Coenzymes
 - b. Part of coenzyme structure
 - c. Influence coenzyme synthesis
 - d. Influence enzyme synthesis
 - 2. Specific examples of effects
 - a. Influence rate of cellular reactions **most overall**; true of all of the following (b-h)
 - b. Growth & development via synthesis of new cell parts
 - c. Membrane transport
 - d. Osmotic balance
 - e. General ionic balances
 - f. Acid base balance
 - g. Energy balance via cellular respiration
 - h. Stress responses

- 3. Membrane receptors
 - a. Specific proteins different kind for each hormone
 - b. Hormone is first messenger usually impermeable
 - c. Hormone bonding causes receptor shape change
 - d. Two basic mechanisms for changes
 - Enzyme activation (e.g.), which often leads to a cascading series of further reactions
 - Gene expression via either stimulating or suppressing protein synthesis
 - d. Second messenger activated in cytoplasm
 - Examples
 - Cyclic AMP
 - Cyclic GMP
 - Ca⁺⁺ -- binds with intracellular calmodulin
 - Membrane phospholipids
 - > Split into small substances by phospholipase-c
 - > Examples inositol triphosphate & diacylglycerol
 - Second messenger produces action
 - Not necessary for small, permeable hormones
- G. Regulation
 - 1. Negative feedback
 - a. Inhibition (negation) of hormonal effects
 - b. Feedback loop simplest, <u>short</u> type
 - An endocrine organ (A) affects a target (B)
 - B inhibits A when sufficient action has occurred

- c. Long loop
 - Third organ or tissue involved C
 - A affects B, then B affects C
 - C feeds back to inhibit A
 - Both A & B will be endocrine organs
- d. Longer loops possible e.g. A, B, C, D

Non - Hormonal Chemical Messengers

- A. Metabolites
 - 1. Too general all cells produce them
 - 2. e.g. excessive CO₂ induces metabolic responses

B. Enzymes

- 1. Too general all cells produce them
- 2. Hormones are "enzymatic", though

C. Pheromones

- 1. Scents released to affect other individuals
- 2. Not hormones since action is external
- D. Vitamins
 - 1. Indeed have hormone-like effects from food, not synthesized (termed essential
 - Vitamin-D and the retinoids <u>are</u> synthesized actions very much hormone-like

E. Neurotransmitters

- 1. Substances secreted by nerve cells to affect each other
- 2. Some goes into blood negligible amount
- 3. Some nerve cells <u>do</u> secrete true hormones
 - a. These are exceptions
 - b. e.g. hypothalamus
- 4. Some hormones **are** neurotransmitters e.g. TRH; cRH; CCK
- F. Eicosanoids (e.g. Prostaglandins)
 - 1. The most hormone like messengers
 - 2. Reasons for not being hormones
 - a. Produced by almost all cells
 - b. Action within producing organ
 - c. Responses varied
 - 3. Considered <u>autocrine</u> or <u>paracrine</u> regulators
 - a. Modulate hormone action
 - b. Co-messenger works with second messenger
 - 4. All chemically similar modified fatty acids (mostly arachidonic)
 - 5. Examples of actions
 - a. General regulate hormone release and actions
 - b. Inflammatory responses
 - c. Anticoagulant
 - d. Fat breakdown rate
 - e. Blood pressure regulation
 - f. Uterine contractions

HYPOPHYSIS (PITUITARY GLAND OR BODY)

Adenohypophysis (Anterior Pituitary)

- A. General
 - 1. Most of its hormones termed tropic
 - 2. Target other endocrine organs
- B. Adrenocorticotropic Hormone (ACTH)
 - 1. Structure & secretion
 - a. Polypeptide 39 amino acid residues
 - b. Secreted by β -basophils of pars distalis
 - 2. Actions
 - a. Targets cortex of adrenal glands
 - b. Controls secretion of glucocorticoids (mostly), mineralocorticoids (less) and androgens (less) [all explained later]
 - c. Maintains size & blood flow of entire adrenals
- C. Somatotropic (Growth or Human Growth) Hormone (STH, GH or HGH)
 - 1. Structure & secretion
 - a. Protein 191 amino acid residues
 - b. Secreted by acidophils of pars distalis
 - 2. Does not affect targets directly, but via mediators from other sources
 - a. IGF's (Insulin-like Growth Factors), also termed somatomedins
 - b. Polypeptides (70 and 60 amino acid residues)
 - c. Similar structure to and action to insulin, but only for cell metabolism
 - d. Secreted by liver and many other tissues

- e. Have autocrine, paracrine and endocrine functions
- f. Both GH and insulin necessary for IGF's to function

3. Actions

- a. Directly targets <u>all cells</u> of the body
- b. Basically stimulates attainment of adult size
- c. After adulthood, maintains body throughout life
- d. Accomplishes above via:
 - Amino acid intake & use by cells
 - Mobilization & respiration of stored fat
 - Glycogenolysis glucose release from glycogen
 - Bone calcification & growth
- 4. Hypersecretion
 - a. Gigantism
 - Before maturity
 - Proportionate enlargement of all body parts
 - b. Acromegaly
 - After maturity
 - Grossly enlarged jaw, hands & face
- 5. Hyposecretion
 - a. Dwarfism
 - Before maturity
 - Normal mental development (unlike thyroid version)
 - b. Simmond's disease
 - After maturity
 - Apathy, muscle atrophy, diminished sexual functions

- D. Thyroid-Stimulating Hormone (TSH or thyrotropin)
 - 1. Structure & secretion
 - a. Glycoprotein –2 polypeptides + carbohydrate (8%)
 - b. Secreted by γ -basophils of pars distalis
 - 2. Actions
 - a. Controls synthesis & secretion of thyroid hormones
 - b. Maintains size & blood flow of gland
 - 3. Hyper- & hyposecretion
 - a. Identical with extremes of the thyroid hormones
 - b. [presented later]
- E. Gonadotropic hormones
 - 1. Follicle-Stimulating Hormone (FSH)
 - a. Structure & secretion
 - Glycoprotein 2 subunits & 10% carbohydrate
 - Secreted by γ -basophils of pars distalis
 - b. Actions
 - Female stimulates ovarian follicle development
 - Male stimulates sperm formation & maturation
 - 2. Luteinizing (Interstitial Cell-Stimulating) Hormone (LH or ICSH)
 - a. Structure & secretion
 - Glycoprotein almost identical to FSH
 - Secreted by △-basophils of pars distalis
 - b. Actions
 - Female
 - Follicle maturation

- Ovulation
- Corpus luteum formation
- Secretion of estrogens & progesterone
- Male secretion of testosterone from testes
- 3. Luteotropic Hormone (LTH, prolactin, lactogenic hormone or mammotropin)
 - a. Structure & secretion
 - Protein _ 198 amino acid residues
 - Secreted by acidophils of pars distalis
 - b. Actions
 - In both sexes, but can only function in females
 - Normal mammary gland growth & milk production
- F. Melanocyte-Stimulating Hormone (MSH)
 - 1. Structure & secretion
 - a. Polypeptide 13 amino acid residues
 - b. Secreted by pars intermedia
 - 2. Action in <u>non-humans</u>

Stimulation of skin's melanocytes to produce melanin

- 3. Debated importance
 - a. Secreted in very small quantities
 - b. Identical with first part of larger ACTH molecule
 - c. Often omitted as being a pituitary hormone
- G. Hypothalamic control
 - 1. General
 - a. Controls all hormonal release

- b. Via its own set of hormones
 - Peptides or polypeptides 3 to 44 amino acids
 - Synthesized by specialized neurons
- c. Special vascular connection hypophyseal portal system
- d. Stimulated by sensory input from many sources
- 2. Releasing hormones
 - a. Corticotropin-releasing hormone (CRH)
 - b. Growth hormone-releasing hormone (GHRH or GRH)
 - c. Thyrotrophin-releasing hormone (TRH)
 - d. Gonadotrophin-releasing hormone (GnRH)
 - e. Others
 - Prolactin-releasing factors (PRL) TRH (?); VIP; serotonin
 - MSH-releasing hormone debatable
- 3. Inhibiting hormones
 - a. Somatostatin (growth hormone-inhibiting hormone GHIH) also inhibits TSH and other hormones (insulin; glucagon; gastrin; secretin; VIP)
 - b. Prolactin-inhibiting factors (PIH or PIF) dopamine and GABA
 - c. Others
 - Debated presence of any for ACTH, TSH, FSH, LH
 - Not necessary in theory
 - GH & LTH have non-endocrine targets
 - Tropic hormones have better feedback loops

Endocrine _ 13

Neurohypophysis (Posterior Pituitary)

- A. Hypothalamic control
 - 1. Actually synthesizes all hormones from this division
 - a. Neurosecretory cells specialized neurons
 - b. Nonapeptides
 - c. Bound with carrier proteins for transport & storage
 - 2. Transported through stalk to pars nervosa
 - 3. Pars nervosa stores & releases hormones
- B. Antidiuretic Hormone (ADH or arginine vasopressin)
 - 1. Controls rate of water excretion by kidneys [explained later]
 - 2. Increases blood pressure
 - a. Only in high concentrations normally very low
 - b. Called vasopressin in this situation

C. Oxytocin

- 1. Stimulates uterine contractions for childbirth
- 2. Causes milk ejection in mammary glands
 - a. Muscle contractions in ducts
 - b. Stimulated by suckling

THYROID GLAND

Thyroxine & Triiodothyronine

- A. Chemistry
 - 1. Structure
 - a. Thyroxine (T₄) basically 4 iodines + tyrosine

- b. Triiodothyronine $(T_3) 3$ iodines + tyrosine
- 2. Formation
 - a. Synthesized by follicular epithelial cells
 - b. T₄ & T₃ part of parent molecule thyroglobulin
 - c. Thyroglobulin 2 subunits, each 5,496 amino acid residues
 - d. Secreted into follicular cavity as colloid
- 3. Extracellular storage
 - a. Unusual most hormones into blood after synthesis
 - b. Reason vitally important hormones
 - c. Approximate one month supply in colloid
- 4. Release & transport
 - a. Thyroglobulin back into follicular epithelial cells
 - b. Hydrolysis within lysosomes releases T₄ & T₃
 - c. Much more T₄
 - d. Secreted into blood
 - e. Most bound with carrier thyroid-binding globulin (TBG)
- 5. Relative effects
 - a. Free (unbound) hormone acts immediately
 - b. Bound hormone in reserve gradually released
 - b. T₃ more potent, but effects shorter term
- B. Actions
 - 1. Protein synthesis
 - a. Stimulated in all cells
 - b. Results in more enzymes
 - c. Basic reason for all other actions

- 2. Oxidative respiration
 - a. Stimulated in most cells
 - b. Brain not affected
- 3. Carbohydrate metabolism (not just respiration)
 - a. Stimulated in all cells
 - b. Via more absorption, release from storage & utilization
- 4. Lipid metabolism
 - a. Stimulated in all cells
 - b. All phases (similar to carbohydrates)
- 5. Growth & development
 - a. Promoted in all cells
 - b. Especially affects CNS
 - c. Skeletal maturation notable as well
- C. Dysfunctions
 - 1. Underlying causes one of the following
 - a. TSH secretion incorrect
 - b. Thyroid malfunction
 - c. TRH incorrect
 - d. Iodine deficiency
 - 2. Goiter
 - a. Enlargement of thyroid
 - b. From increased activity
 - c. Could be fruitless from iodine deficiency
 - d. Could be productive, but harmful, if from hyperthyroidism

- 3. Hypothyroidism
 - a. Before maturity

Dwarfism with mental retardation

- b. After maturity
 - Myxedema
 - Muscle weakness, lethargy, low body temperature
 - Obesity, but with very small appetite
- 4. Hyperthyroidism
 - a. Graves' disease before or after maturity
 - b. Extreme hyperactivity & mental / emotional instability
 - c. Extreme perspiration & feeling hot
 - d. Weight loss, but voracious appetite

Thyrocalcitonin (Calcitonin)

- A. Chemistry
 - 1. Polypeptide 32 amino acid residues
 - 2. Synthesized by C-cells (parafollicular cells) between follicles

B. Actions

- 1. Lowers blood Calcium (Ca⁺⁺) level
 - a. Increases uptake by bone matrix
 - b. Decreased resorption (release) inhibits osteoclasts
- 2. Regulation
 - a. No control from any other organ
 - b. C-cells directly monitor blood Calcium level

3. Coordinated with parathyroid [see below]

PARATHYROID GLANDS

Hormones

- A. Parathyroid hormone or Parathormone (PTH)
 - 1. Polypeptide 84 amino acid residues
 - 2. Synthesized & secreted by chief (zymogenic) cells
- B. Vitamin D (Cholecalciferol)
 - 1. Steroid cholesterol derivative
 - 2. Two sources
 - a. Dietary
 - b. Synthesized within the skin
 - Ultraviolet radiation necessary for reactions
 - Same potency as dietary form
 - Makes this not a true vitamin
 - 3. Relation to PTH
 - a. Final reaction to active form mediated by PTH
 - b. In response to need for increased blood calcium

Actions

- A. Elevates blood calcium level
 - 1. Bone resorption increased stimulates osteoclasts
 - 2. Kidney reabsorption increased less excretion

3. Intestinal absorption increased – vitamin D more active here

B. Overall calcium balance

- 1. Hypercalcemia increased blood calcium
 - a. Depresses PTH secretion
 - b. Less vitamin D synthesis
 - c. Stimulation of thyrocalcitonin secretion
 - d. Calcium level back down to normal
- 2. Hypocalcemia lowered blood calcium
 - a. Directly stimulates chief cells increased PTH
 - b. Activates vitamin D
 - c. No thyrocalcitonin effect PTH potent enough
 - d. Calcium level back up to normal

Dysfunctions

- A. Hypoparathyroidism (Tetany)
 - 1. Severe, uncontrollable hypocalcemia
 - 2. Muscle & nerve cell irritability
 - 3. Muscle spasms from spontaneous tetanic contractions
 - 4. Sodium is the actual problem
 - a. <u>Slight</u> sodium imbalance <u>normally</u> leads to contraction
 - b. Insufficient calcium allows <u>massive</u> sodium imbalance
- B. Hyperparathyroidism
 - 1. Severe, uncontrollable hypercalcemia
 - 2. Muscle weakness

- 3. Bone pain from severe decalcification
- 4. Kidney calculi (stones) precipitate here, from removal efforts

ADRENAL (SUPRARENAL) GLANDS

<u>Cortex</u>

- A. General
 - 1. Hormone Chemistry
 - a. All corticosteroids derived from modified cholesterol
 - b. Very similar structures same basic synthetic pathway

2. Regulation

- a. ACTH directly CRH indirectly
- b. Controls development & maintenance of entire cortex
- c. More control over glucocorticoids
- B. Mineralocorticoids
 - 1. Chemistry
 - a. Secreted by zona glomerulosa
 - b. Aldosterone 90% of the total & most potent
 - c. Deoxycorticosterone
 - d. Glucocorticoids
 - Very slight mineralocorticoid- like activity
 - Greater volume secreted, however

- 2. Actions
 - a. Sodium reabsorption
 - Increased active transport retains sodium
 - Through membranes of epithelial cells
 - Primarily kidneys
 - Other glands sweat, salivary, intestinal (several)
 - b. Potassium excretion
 - Always moves opposite direction from sodium
 - Na⁺ / K⁺ pump moves both simultaneously
 - c. Water reabsorption
 - This is the reason for sodium reabsorption
 - Water tends to follow sodium
 - Only if permitted by ADH
 - For fluid volume control [details later excretion]
 - d. Other, secondary effects
 - Chloride, bicarbonate & hydrogen ions
 - [details later excretion]
- 3. Control in descending importance
 - a. Hyperkalemia stimulates secretion
 - b. Renin angiotensin system
 - Kidney hormone / blood enzyme interaction
 - [explained later excretion]
 - c. Hyponatremia stimulates secretion
 - d. ACTH very little influence

- 4. Overall significance
 - a. Absence would be fatal few days to a week or more
 - b. Results in cardiac shock

C. Glucocorticoids

- 1. Chemistry
 - a. Secreted by zona fasiculata (mostly) & reticularis
 - b. Cortisol (hydrocortisone) --over 90% & more potent
 - c. Corticosterone

2. Actions

- a. Glucose supplies & blood level elevated
 - Gluconeogenesis in liver from amino acids
 - Decreased transport into all cells
 - Decreased respiration all cells

b. Proteins

- Promotes catabolism all cells, but mostly muscles
- Provides amino acids for gluconeogenesis
- c. Fats
 - Hydrolyzed from storage adipose tissue
 - Respiration stimulated all cells

[Note: actions a-c related to starvation conditions]

- > Maintains blood glucose
- > Preserves CNS function

> Maintains cardiovascular function
– via CO and BP stimulus

> Depresses reproductive function – via pituitary and gonadal

- d. Stress responses
 - Stimulated by many stressful situations
 - Mobilizes needed nutrients for responses
- e. Anti-inflammatory promotes recovery & healing
 - Suppresses immune responses in injured tissues
 - Reduces lysosomal self-destruction of cells
 - Inhibits mast cells & phagocytes
 - Reduces tissue fluid pooling capillary permeability
- 3. Control
 - a. ACTH directly
 - b. CRH indirectly
 - c. Stress produces more cortisol in only few minutes
- 4. Significance
 - a. Hyposecretion

Not directly nor as rapidly fatal as lack of aldosterone

- Severe metabolic imbalance
- Poor resistance to stress
- b. Hypersecretion

Susceptible to minor infections – these could be fatal

C. Sex Hormones

- 1. Androgens
 - a. Male hormones from zona reticularis
 - b. Dehydroepiandrosterone (DHA) most important
 - c. Androstenedione

- Endocrine _ 23
- d. Relation to testosterone from testes
 - Less important & potent
 - May be converted to testosterone
- e. Actions
 - Little in men
 - Women influences pubic & axillary hair growth
- 2. Estrogens & progesterone
 - a. Female hormones
 - b. Secreted in very low levels
 - c. Main source ovaries
- D. Dysfunctions
 - 1. Hypoadrenalism
 - a. Addison's disease adrenal, ACTH or CRH cause
 - b. Loss of sodium & water; hyperkalemia
 - c. Low blood pressure from mineral imbalance
 - d. Hypoglycemia
 - e. Excessive skin pigmentation low feedback, more ACTH
 - 2. Hyperadrenalism
 - a. Cushing's syndrome usually adrenal or pituitary tumor
 - b. Abnormal fat distribution
 - c. Weakness from muscle atrophy
 - d. Hyperglycemia insulin cannot correct
 - e. Hypertension from hypernatremia & water retention
 - f. Immune & inflammatory suppression

- 3. Androgenital syndrome
 - a. Excessive androgen secretion usually tumor
 - b. Before maturity
 - Males sexual precocity
 - Females masculinization of hair, voice & clitoris
 - c. After maturity
 - Males no effects masked by normal testosterone levels
 - Females virilism
 - Hirsutism
 - Breasts diminish
 - Male musculature develops
 - Cessation of ovulation & menstruation
 - d. Hyposecretion no effects

Medulla

- A. Hormones
 - 1. Essentially identical catecholamines
 - a. Epinephrine (adrenaline) greater amount
 - b. Norepinephrine (noradrenaline)
 - 2. Stored within vesicles for later release
- B. Actions
 - 1. Mimic nervous system effects [review Autonomic System]
 - a. Sympathetic division of autonomic nervous system
 - b. Nervous system acts faster, but shorter lived
 - c. Concerned with stress responses

- 2. Glucose [adrenal only]
 - a. Glycogenolysis liver & skeletal muscles
 - b. Stimulates respiration
- 3. Fats hydrolyzed [adrenal only]
- 4. Cardiovascular [both autonomic and adrenal]
 - a. Heart increased output
 - b. Vasoconstriction
- 5. Nervous / sensory [autonomic only]
 - a. Mental stimulation
 - b. Pupil dilation
- C. Control & Significance
 - 1. Secreted from nervous stimulation by sympathetic division
 - 2. Reinforcement & backup for sympathetic
 - 3. Affects all cells metabolically sympathetic does not
 - 4. Actions last several minutes

PANCREAS

<u>Insulin</u>

- A. Chemistry
 - 1. Protein 2 subunits (polypeptide chains) 21 & 30 amino acids
 - 2. Synthesized by beta cells of islets of Langerhans

- B. Stimuli
- 1. For secretion
- a. Ingested glucose and some other monosaccharides glucose most potent stimulus
- b. Nervous vagal (parasympathetic)
- 2. Amplifiers if glucose caused
 - a. Glucagon-like peptide (GLP) from small intestinal lining
 - b. Gastric Inhibitory Peptide (GIP)
 - c. Cholecystokinin (CCK)
 - d. Secretin
 - e. Gastrin
- 3. Inhibitors
 - a. Sympathetic
 - b. Somatostatin
- B. Actions
 - 1. Glucose
 - a. Lowers blood glucose all cells, except brain
 - b. Mechanisms
 - Increased transport into cells
 - Increased respiration
 - Increased glycogenesis liver & muscle
 - Decreased gluconeogenesis liver
 - 2. Fats
 - a. Decreased respiration via glucose use
 - b. Fatty acid synthesis liver
 - c. Transport to adipose tissue for storage

- 3. Proteins
 - a. Increased amino acid transport into cells
 - b. Increased protein synthesis
 - c. Decreased gluconeogenesis

C. Dysfunctions

- 1. Diabetes mellitus
 - a. Insufficient insulin (Type I) or defective target cell receptors (Type II)
 - b. Insulin-dependent (Type I or juvenile-onset)
 - Daily insulin injections required
 - No other treatments
 - c. Non-insulin-dependent (Type II or adult-onset)
 - Insulin need variable
 - Related to obesity
 - Proper diet & exercise may preclude any insulin

d. Effects

- Hyperglycemia
- Abnormal fat metabolism & atherosclerosis
- Protein loss
- 2. Potentially fatal
 - a. Hyperglycemic coma
 - Excess fatty acid metabolism
 - Acidosis causes blood ph to drop
 - b. Hypoglycemic coma
 - Excessive insulin over-injection or pancreatic tumor
 - Shock from brain glucose deprivation

Glucagon

- A. Chemistry
 - 1. Protein 29 amino acid residues
 - 2. Secreted by alpha cells of islets of Langerhans

B. Actions

- 1. Elevates blood glucose insulin antagonist
- 2. Mechanisms
 - a. Stimulates glycogenolysis liver
 - b. Stimulates gluconeogenesis liver
- C. Control
 - 1. Blood glucose indirect proportion
 - 2. Blood amino acids direct proportion, since for gluconeogenesis
 - 3. Insulin inhibits alpha cell secretion
- D. Other insulin antagonists
 - 1. Growth Hormone decreases transport into cells
 - 2. Cortisol –stimulates gluconeogenesis
 - 3. Epinephrine stimulates glycogenolysis

Somatostatin (same substance as hypothalamic GHIH)

- A. Chemistry
 - 1. Polypeptide tetradecapeptide (14 amino acid residues)
 - 2. From delta cells of islets of Langerhans & hypothalamus

- B. Actions
 - 1. Depresses insulin & glucagon also GH and TSH
 - 2. Depresses digestive movements, secretion & absorption
 - 3. Significance debated may prolong nutrient availability

Pancreatic Polypeptide (PP)

- A. 36 amino acid residues
- B. Secreted by F-cells of islets
- C. Stimulated by ingested proteins, fasting, exercise and hypoglycemia
- D. Slows absorption of digested food possibly to allow more steady protracted absorption