INTRODUCTION

Respiration

- A. Concept
 - 1. **Respiration is not synonymous with cellular respiration**
 - 2. In its complete meaning, consists of 4 distinct phases
- B. Phases essentially in order of occurrence
 - 1. Breathing
 - a. Inspiration (inhalation) beginning point
 - b. Expiration (exhalation) end point
 - 2. Gas Exchanges
 - a. Diffusion between inspired air & pulmonary capillaries
 - (1) O₂ diffuses from air in alveoli into pulmonary capillary blood
 - (2) CO₂ diffuses from pulmonary capillary blood into alveoli
 - b. Diffusion between systemic capillaries & tissue fluid
 - (1) O₂ diffuses from systemic capillary blood into tissue fluid
 - (2) CO₂ diffuses from tissue fluid into systemic capillary blood
 - c. Diffusion between all body cells & tissue fluid
 - (1) O₂ diffuses from tissue fluid into cells
 - (2) CO₂ diffuses from cells into tissue fluid
 - 3. Gas transport
 - a. Blood transport of O₂ from pulmonary capillaries to systemic capillaries

- b. Blood transport of CO₂ from systemic capillaries to pulmonary capillaries
- 4. Cellular respiration [no details -- from prerequisite]
 - a. Concept ATP production
 - b. Relation with other 3 phases
 - (1) Utilizes inspired, absorbed, transported O₂
 - (2) Generates waste CO_2 transported, secreted, expired
 - c. 2 types
 - (1) Aerobic
 - \Box O₂ utilized for oxidative phosphorylation
 - Most common
 - (2) Fermentation
 - □ Often termed "anaerobic" incorrect
 - \Box Oxidative phosphorylation with <u>no</u> O₂
 - □ Limited liver, cardiac & some skeletal muscles

Respiratory System

A. Concept

Organs primarily or secondarily involved in breathing

- B. Components & Functions
 - 1. Nose & nasal passages
 - a. Warms incoming air close to body temp.
 - b. Humidifies air mucus binds water
 - c. Filters out particles

- (1) Hairs & sticky mucus
- (2) Cilia move mucus to throat swallowed
- d. Olfaction
- e. Speech sinuses contribute to voice resonance
- f. Anti-microbial
 - (1) Secreted bacteriostatic substances
 - (2) Mucus traps microbes
 - (3) Extensive sub-mucous layer with abundant lymphocytes & macrophages
- 2. Mouth
 - a. Primarily a digestive organ, but can be an air intake
 - b. Cannot effectively duplicate all of nose's functions
- 3. Pharynx (throat)
 - a. Nasopharynx
 - \Box Air passage
 - □ Lining same as nasal similar functions
 - Openings from eustachian tubes of middle ears
 - Pharyngeal tonsils (adenoids)

b. Oropharynx

- □ Joins posterior mouth opening
- □ Both air & food passage
- □ Lining variable
 - □ Respiratory pseudostratified
 - Digestive non-keratinized stratified squamous
- c. Laryngopharynx

Respiratory – 4

- Adjacent to laryngeal opening
- □ Inferior opening to esophagus
- □ Variable lining like oropharynx
- 4. Larynx (voice box)
 - a. Controls pharyngeal entry glottis
 - □ Open for air entry
 - □ Closed during swallowing
 - b. Joins trachea
 - c. Phonation vocal folds (cords) vary pitch
- 5. Trachea (windpipe)
 - a. Air passage only
 - b. Cartilage rings prevent collapse
- 6. Bronchial tree
 - a. General
 - Progressively smaller branches (~25 levels) from trachea to eventually join the tremendous number of tiny air sacs
 - Smooth muscle in walls to increase or decrease air flow [details later]

b. Bronchi

- Systematic branchings from trachea
- □ Logical divisions for right/left lungs, lung lobes & lobe subdivisions
- □ Irregular rings & patches of cartilage
- Pseudostratified lining
- c. Bronchioles
 - Lack cartilage collapse prevented by air pressure

phenomena which keep air sacs open as well [explained later]

- □ Lining changes as diameter decreases, but always ciliated/goblet eventually simple cuboidal
- 7. Alveoli (air sacs) [details through rest of outline]
 - a. These are effectively the lungs
 - b. They contain the air for gas exchange
 - c. Tremendous collective capacity & surface area
 - □ 300 million
 - \Box Total surface 75 M²
 - d. Simple squamous walls for permeability
- 8. Skeletal muscles [details later]
 - a. General involved in mechanical forces to produce breathing movements
 - b. Thoracic
 - □ External intercostals
 - □ Internal intercostals
 - □ Diaphragm
 - □ Minor role from some other muscles
 - c. Abdominal rectus abdominis
- 9. Thoracic skeleton
 - a. General
 - □ Support for thoracic wall
 - □ Framework for muscular action
 - b. Ribs
 - Primary importance

- □ Shape & attachments permit variable positions for breathing movements
- c. Sternum anterior rib attachment point
- d. Vertebrae posterior rib attachment points

MECHANICS OF BREATHING

Pressure Gradients

This is a basic requirement for breathing, since gases, like any other substance, will only move down a concentration gradient.

Inspiration

- A. Introduction
 - Objective induce outside air to enter respiratory passages & lungs
 - 2. Gradient one must be created so that lung pressure is less than atmospheric
- B. Thoracic Expansion
 - 1. Cause
 - a. General size increase from muscle contraction & rib movements
 - b. Diaphragm
 - □ Contraction causes descent into abdominal cavity
 - □ Vertical increase in thoracic size
 - c. External intercostals
 - □ Contraction elevates ribs upward & outward

Lateral & dorso-ventral increase in thorax

- 2. Effect
 - a. Concept intra-thoracic pressure decreases
 - b. Location space between visceral & parietal pleural membranes
 - c. Reason
 - □ Thoracic cavity closed no outside opening
 - □ Enlarged area from expansion
 - Gas pressure decreases when volume increases

d. Amount

- Quiet from resting –5 mmHg to –8 mmHg
- Forced as much as –40 mmHg

e. Pressure explanation

- □ –5 mmHg (e.g.) means <u>5 below atmospheric</u>
- STPD (Standard Temperature and Pressure Dry) at sea level is 760 mmHg at 25°C — so, –5 mmHg is actually 755 mmHg

C. Lung Expansion

- 1. Cause
 - a. General size (alveolar capacity) increases
 - b. Reason
 - □ Intra-thoracic pressure drop in surrounding space
 - □ Permits inflation from less pressure
 - □ Note that lungs are quite elastic, spongy & mostly filled with air
- 2. Effect
 - a. Concept intra-alveolar pressure decreases

- b. Reason [same as intra-thoracic above]
- c. Amount
 - Quiet from resting 0 mmHg to –**3 mmHg**
 - □ Forced as low as –35 mmHg
 - □ [Note that intra-alveolar will <u>always</u> be 5 mmHg higher than intra-thoracic]
- D. Pressure Gradient
 - □ Negative pressure in lungs is now below atmospheric of 0 mmHg within air passages & outside air surrounding head.
 - Slight vacuum will suck air into expanded lungs
 - □ Note lungs & thorax do <u>not</u> expand due to air entry, but vice versa
- E. Surface Tension Effects
 - 1. Concept water creates cohesive tension at its surface with air
 - 2. Positive effects
 - a. Location
 - Between parietal & visceral pleural membranes
 - □ Watery serous fluid secreted by membranes

b. Result

- □ Moist membranes adhere to each other
- Assists in lung expansion resists pulling away from expanding thoracic wall
- 3. Negative effects
 - a. Location
 - □ Within alveoli
 - □ Moisture from secretions creates necessary fluid

environment

- b. Result
 - This internally holds alveolar walls together
 - □ <u>Resists</u> expansion

c. Solution

- **Surfactant** secreted by special alveolar cells
- \Box Acts as wetting agent decreases surface tension

F. Lung Compliance

- 1. Concept amount of stretch permitted
- 2. Cause degree of elasticity
- 3. Importance
 - a. Determines effort needed for inspiratory expansion
 - b. Significant variable in forcefulness of inspiration
- 4. Pathological decrease
 - a. Cause TB (e.g.) reduces elasticity by stiffening connective tissue around alveoli
 - b. Results
 - □ Lungs resist expansion
 - Extraordinary effort for lungs to follow expanding thorax

Expiration

- A. Introduction
 - 1. Objective to force air out of the lungs & air passages
 - 2. Gradient opposite from that of inspiration, with intra-alveolar pressure higher than atmospheric

B. Quiet

- 1. Contrast with inspiration
 - a. At rest, all movements are **passive**
 - b. No muscular contraction required
- 2. Basic cause inspiratory muscles merely relax

3. Results

- a. Diaphragm
 - □ Intra-abdominal pressure was increased during inspiration from diaphragm pushing down
 - Pressure now forces up relaxed diaphragm
 - Not just to resting point prior to inspiration, but compression from muscle elasticity

b. Ribs

- □ From relaxed external intercostals
- □ Rib tension from expansion reversed
- □ Thoracic compression

c. Lungs

- □ Size decrease elasticity permits
- □ Surfactant
 - Aids in preventing complete collapse
 - □ Strong inner attraction of moisture
- 4. Intra-thoracic effect
 - a. Intra-thoracic pressure raised
 - b. Reason air compression from thoracic compression
 - c. Amount
 - From peak inspiratory –8 mmHg up to –2 mmHg

- □ Increase of 6 mmHg
 - □ More than 3 mmHg inspiratory change
 - Due to acceleration from sharpness & force of diaphragm & thoracic wall recoil
- 5. Intra-alveolar effect
 - a. Intra-alveolar pressure raised
 - b. Reason compression from intra-thoracic increase
 - c. Amount
 - From peak inspiratory –3 mmHg to **+3 mmHg**
 - □ Same 6 mmHg increase as intra-thoracic
- 6. Pressure gradient
 - □ Intra-alveolar pressure now above atmospheric of 0 mmHg in air passages & air surrounding head
 - □ Alveolar air squeezed out of compressed lungs
 - □ Note thorax & lungs do <u>not</u> diminish due to collapse from air exit, but vice versa
- C. Forced
 - 1. Active, contrasted with quiet expiration
 - 2. Occurrences
 - a. Exercise
 - b. Hyperventilation
 - c. Sneezing
 - d. Coughing
 - e. Sighing

- 3. Causes
 - a. Basic
 - □ Muscle contraction
 - Different from inspiratory muscles

b. Internal intercostals

- Different angle of attachment than external
- Pull ribs downward & inward
- □ Thoracic compression laterally & antero-posterior

c. Rectus abdominis

- Pair of band-like muscles from ribs/sternum to pubis
- Pulls down on ribs enhances effect of internal intercostals
- Greatly increases intra-abdominal pressure on diaphragm
- 4. Intra-thoracic effect
 - a. Increases thoracic pressure
 - b. Amount to as much as +40 mmHg
- 5. Intra-alveolar effect
 - a. Increases intra-alveolar pressure same extent as intrathoracic
 - b. Amount to as much as +45 mmHg
- 6. Pressure gradient
 - □ Much greater than during quiet expiration
 - □ More forceful expiration results

Volume Changes & Capacities

- A. Introduction
 - 1. Relates to lab work spirometry
 - 2. Subject to great individual variation
 - a. Inherent variables e.g. sex & body size
 - b. Physical condition
 - c. Health
- B. Tidal Volume (V_T)
 - 1. Concept amount inspired & then expired with each breathing cycle
 - 2. Amount normally 500 ml
- C. Inspiratory Reserve Volume (IRV or complemental)
 - 1. Concept amount taken in by a maximum effort after inspiration of tidal
 - 2. Amount 2800-3000 ml
- D. Expiratory Reserve Volume (ERV or supplemental)
 - 1. Concept amount expelled by a maximum effort after expiration of tidal
 - 2. Amount 1000-1200 ml
- E. Residual Volume (RV)
 - 1. Concept amount remaining in lungs even after maximum forced expiration
 - 2. Amount 1200 ml
 - 3. Cause lungs partially stretched, never fully collapsed

- F. Inspiratory Capacity (IC)
 - 1. Concept $IC = V_T + IRV$
 - 2. Amount 500 ml + 3000 ml = 3500 ml
 - 3. Significance maximum inspiration possible following expiration
- G. Functional Residual Capacity (FRC)
 - 1. Concept FRC = ERV + RV
 - 2. Amount 1200 ml + 1200 ml = 2400 ml
 - 3. Significance maximum amount remaining at end of quiet expiration
- H. Vital Capacity (VC)
 - 1. Concept $VC = V_T + IRV + ERV$
 - 2. Amount 4600/3800 ml (men/women)
 - 3. Significance standard measure of respiratory fitness
- I. Total Lung Capacity (TLC or Reserve)
 - 1. Concept TLC = VC + RV
 - 2. Amount 5800/5000 ml (men/women)
 - 3. Significance maximum lung expansion possible
- J. Ventilation (Minute Respiratory Volume or V_E)
 - 1. Concept quantity of air passing through lungs in one minute
 - 2. Calculation
 - a. Formula rate x volume
 - b. Resting $14/\min x 500 \text{ ml} = 7 \text{ L/min}$
 - c. Maximum 50/min x 4500 ml = 225 L/min
 - d. Minimum 3/min x 500 ml = 1,500 ml/min

- 3. Variations expected in different persons, due to sex, age & health
- 4. Significance very practical application, since individual inspiratory/expiratory cycles & their volumes, though important, do not measure real life situation over time
- K. Dead Space (V_D)
 - 1. Concept
 - a. Volume of air in respiratory passageways
 - b. Within nostrils, pharynx, larynx, trachea, & bronchial tree
 - 2. Amount
 - a. 150 ml
 - b. Constant for quiet or forced breathing
 - 3. Significance
 - a. Does not function in gas exchange only alveolar air can
 - b. First to be expired, so prevents complete expiration of air within alveoli
 - 4. Physiologic dead space
 - \Box Not the same concept as V_D
 - □ This is <u>alveoli</u> which are damaged & incapable of gas exchange
- L. Alveolar Volume (VA)
 - 1. Concept $VA = V_T V_D$
 - 2. Amount 500 ml 150 ml = 350 ml
 - 3. Significance only this part of tidal volume is available for gas exchange

- M. Alveolar Ventilation (V_A)
 - 1. Concept V_A = rate x VA
 - 2. Amount 14/min x 350 ml = 4.9 L/min
 - 3. Significance
 - a. This reveals the <u>effective</u> minute respiratory volume, since it utilizes the alveolar volume
 - b. It is more accurate than V_E

Breathing Movements & Patterns

- A. Introduction
 - 1. These are standard situations
 - 2. Their order is not significant
 - 3. Most can be applied to the various test conditions utilized in lab
- B. Eupnea
 - 1. <u>Ordinary quiet</u> breathing
 - 2. Occurs without awareness, with ease & comfort
- C. Dyspnea
 - 1. <u>Labored distressed</u> breathing
 - 2. Exaggerated consciousness of necessity for increased effort
 - 3. Occurrence
 - a. Normal high level of exercise
 - b. Abnormal
 - Any blockage of airway or loss of exchange surface
 - \Box e.g. asthma or emphysema

D. Orthopnea

- 1. <u>Dyspnea</u> only when in a <u>particular position</u>
- 2. Always abnormal
- 3. e.g. in congestive heart failure when lying down

E. Hyperpnea (Hyperventilation)

- 1. <u>Increase</u> in ventilation usually rate & depth
- 2. Forced, but not distressed
- 3. Occurrence
 - a. Productive exercise (below level that produces dyspnea)
 - b. Unproductive pain or emotional stimuli
- F. Bradypnea (Hypoventilation)
 - 1. <u>Decrease</u> in ventilation
 - 2. Always abnormal e.g. shock
- G. Polypnea (Tachypnea)
 - 1. <u>Increased rate</u> with <u>no depth increase</u>
 - 2. Always abnormal e.g. thoracic/lung pain or during fever recovery
- H. Apnea
 - 1. <u>Temporary absence</u> of breathing
 - 2. Occurrence
 - a. Normal after non-productive hyperventilation, from lack of need due to excess O₂ & low CO₂
 - b. Abnormal during heart attack [see periodic below]
- I. Periodic
 - Not one particular type of breathing <u>recurring cycle</u> of <u>varied</u> <u>movements</u> — i.e. pattern of different movements

2. Cheyne - Stokes

- a. Most common
 - □ Follows myocardial infarction
 - □ At very high altitudes
 - \Box Some drugs e.g morphine
- b. Repeating pattern
 - □ Very weak bradypnea
 - □ Hyperpnea
 - Diminishing to apnea

GAS EXCHANGE

Introduction

- A. Three Locations [previously given]
- B. Gases [previously given]
- C. Basis

Simple diffusion due to gas pressure gradients

Variables

- A. Partial Pressure
 - 1. Concept in a gas mixture each exerts a pressure independently of the others, as though it alone occupied the total volume
 - 2. This is an expression of the concentration of a gas

3. Symbolized by "P" before chemical symbol in smaller letters

B. Membrane Permeability

- 1. Involves alveolar, capillary & cell membranes
- 2. Exhibit variable permeabilities to respiratory gases
- 3. Will either enhance or inhibit exchanges
- C. Chemical Reactions
 - 1. Involves substances in blood, tissue fluid & cytoplasm
 - 2. Concerned with either gas transport or cellular respiratory reactions
 - 3. Efficiency of reactions exerts significant influence on efficiency of gas exchanges
- D. Blood Circulation
 - 1. Pulmonary & systemic pressure & flow influence efficiency of gas exchanges
 - 2. Slow flow or low pressure would produce low partial pressures
 - 3. Blood only available about 0.50 0.75 second each circuit
- E. Alveolar Surface Area
 - 1. Critical importance in permitting sufficient volume of gas exchanges
 - 2. Inspired air only available for short time
 - 3. Causes of reduction
 - a. Pneumonia
 - b. Emphysema
- F. Air Volume
 - 1. Ventilation of critical importance
 - 2. Must vary proportionately during resting & active situations

- 3. Causes of reduction
 - a. Inappropriate rate &/or volume
 - b. Diseases e.g. asthma or emphysema

Oxygen

- A. Pulmonary
 - 1. PO_2 of inspired air 160 mmHg (of total 760 mmHg)
 - 2. Within alveoli PO₂ lowered to **100 mmHg** due to continual diffusion out into blood
 - 3. Po₂ of capillary blood **40 mmHg**
 - 4. Diffusion of O₂ into blood perpetual never reaches equilibrium
 - a. O₂ laden blood continually circulating out
 - b. Fresh 40 mmHg PO₂ blood continually being circulated in
- B. Systemic
 - 1. PO₂ of **100 mmHg**for freshly oxygenated blood circulating out of lungs back to heart
 - 2. Remains at 100 mmHg through systemic capillaries
 - 3. Po₂ of **40 mmHg** in tissue fluid surrounding capillaries
 - 4. Diffusion of O₂ from capillaries into tissue fluid
 - 5. PO_2 of tissue fluid raised to **100 mmHg**
 - 6. Diffusion of O₂ into tissue fluid perpetual
 - a. O₂ continually diffusing into cytoplasm of cells, since continually expended in cellular respiration
 - b. Thus, <u>effectively</u> PO_2 of tissue fluid always 40 mmHg, despite continually gaining O_2 from blood
 - c. PO_2 of capillary blood <u>effectively</u> always 100 mmHg, due to fresh O_2 laden blood continually circulating in

- 7. Po₂ of **40 mmHg** in venous blood leaving capillaries
 - a. Remains until pulmonary capillaries, when cycle repeats
 - b. This is <u>not</u> severely O₂ depleted blood, since 75% saturated

C. During Exercise

- 1. Systemic
 - a. If strenuous, PO₂ can fall to **<5 mmHg** only 15% saturated
 - b. Cause
 - □ Elevated cellular respiration
 - Leads to more diffusion from tissue fluid
 - Proportionately lowers PO₂ in systemic venous blood

2. Pulmonary

- a. Greatly O₂ depleted incoming blood
- b. Elevated pressure gradient
 - Enhanced diffusion from alveoli
 - Po₂ of 100 mmHg still achieved for outgoing blood

Carbon Dioxide

- A. Systemic
 - 1. Intracellular situation
 - a. CO₂ constantly generated by cellular respiration
 - b. PCO_2 of **46 mmHg**
 - 2. Surrounding tissue fluid
 - a. PCO_2 of **40 mmHg**
 - b. Diffusion from higher intracellular PCO₂
 - c. Its PCO₂ elevated to 46 mmHg

- 3. Systemic capillaries
 - a. PCO₂ of **40 mmHg**
 - b. Diffusion from higher tissue fluid PCO₂
 - c. Its PCO₂ elevated to **46 mmHg**
- 4. Perpetual concentration gradients
 - a. Venous capillary blood continually circulates out
 - b. Arterial capillary blood continually circulates in
- B. Pulmonary
 - 1. Entering blood still at PCO₂ of **46 mmHg**
 - 2. Inspired alveolar air at PCO₂ of **40 mmHg**
 - 3. Diffusion from blood into alveoli
 - a. Lowers blood PCO₂ to 40 mmHg
 - b. Elevates alveolar PCO₂ to 46 mmHg
 - 4. Perpetual diffusion
 - a. Alveolar causes
 - \Box CO₂ laden air continually expired
 - □ CO₂ depleted air continually inspired
 - b. Capillary causes
 - CO₂ depleted blood continually circulating out
 - □ CO₂ laden blood continually circulating in

GAS TRANSPORT

<u>Oxygen</u>

A. Hemoglobin (Hb)

[Structure previously given]

B. Reactions

- 1. O₂ specifically binds with iron (Fe) of heme unit
 - a. Forms oxyhemoglobin
 - b. Easily made bond diffusion into pulmonary capillary blood is sufficient energy
- 2. O₂ release
 - a. Oxyhemoglobin very weak bond
 - b. Bond broken by energy gradient away from hemoglobin in systemic capillary blood
- 3. Roles of globin
 - a. Stabilizes Hb
 - b. Aids in reversibility of O₂ heme reaction
- C. Free O₂
 - 1. Some O_2 dissolved in H_2O of blood
 - 2. ~0.17ml [5ml with Hb]

Carbon Monoxide

- 1. Heme + CO = <u>carboxyhemoglobin</u>
- 2. Aggressive competitor
 - a. 230 times more affinity for heme than O_2
 - b. Much stronger bond than oxyhemoglobin
- 3. Very low Pco in proportion to damaging effects
 - a. 0.4 mmHg will tie up 50% Hb as carboxyhemoglobin
 - b. May be lethal at Pco of only 0.7 mmHg this is only 0.1% of inspired air

Carbon Dioxide

- A. Bicarbonate
 - 1. 70% of CO_2 is transported in this form
 - 2. Produced by dissociation of carbonic acid
 - a. CO₂ combines with blood's water to form carbonic acid, which ionizes to bicarbonate & hydrogen
 - b. $CO_2 + H_2O + carbonic anhydrase = H_2CO_3 = HCO_3^- + H^+$
 - 3. Role of erythrocytes
 - a. Carbonic anhydrase
 - $\square \qquad \mathsf{RBC} \text{ enzyme} \mathsf{accelerates} \text{ reaction between} \\ \mathsf{incoming} \ \mathsf{CO}_2 \ \& \mathsf{cellular water} \\ \end{aligned}$
 - \Box Reversible CO₂ released to alveoli
 - Only tiny amount carried in plasma water reaction too slow without this enzyme
 - b. Hemoglobin buffers H^+ to prevent pH upset
- B. Carbaminohemoglobin
 - 1. 20% of CO_2 is transported in this form
 - 2. Combines with amino groups of globin
 - 3. Small amount combines with plasma proteins
 - 3. Slower reactions than bicarbonate
- C. Free Solution
 - 1. 10% of CO₂ is transported in this form
 - 2. Dissolved in plasma in physical solution as free CO₂

REGULATION

Central Nervous Control

- A. Introduction
 - 1. Respiratory center
 - a. Within brainstem (lower brain)
 - b. 4 portions
 - □ 2 each in medulla & pons
 - □ Various interacting roles
 - 2. Exact knowledge of mechanisms & interactions lacking
- B. Medulla
 - 1. Dorsal group
 - a. Interconnected group (pool) of neurons
 - □ Send impulses among each other continuously for certain time period
 - □ Impulses cease
 - □ Impulses restart
 - □ Rhythmic cycle continues
 - b. Nerves to inspiratory muscles
 - □ Cause contraction
 - Primarily for quiet inspiration
 - c. Quiet expiration from passive recoil during period of impulse cessation
 - d. Receives input from many peripheral receptors [details later]
 - 2. Ventral group
 - a. Utilizes same basic cyclic pool mechanism as dorsal

- b. Forced inspiration
 - □ Nerves from one portion to inspiratory muscles
 - Dorsal group active simultaneously

c. Forced expiration

- □ Nerves from separate portion to expiratory muscles
- □ More pronounced action than inspiratory effect
- d. Apparently acts on signals from dorsal group

C. Pons

- 1. Pneumotaxic center
 - a. Essentially controls duration of inspiration
 - b. Continuous impulses to medulla
 - More frequent impulses cause more interruptions, so faster rate of breathing
 - □ Less frequent impulses cause fewer interruptions, so slower rate
- 2. Apneustic center
 - a. Much disputed in function & even its existence
 - b. Dorsal group effect
 - □ May control the depth of inspiration
 - Direct connection with dorsal group
 - □ Connections with pneumotaxic center, but can produce effect without this
 - c. Evidence from dysfunction
 - Connections to pneumotaxic & sensory input to dorsal group would have to be lost to isolate apneustic center
 - Severe inspiratory apnea results prolonged inspiration with ineffective or no expiration

Sensory Influences

- A. General Relations
 - 1. All of these mechanisms interact with the neural regulators
 - 2. They utilize receptors (sense organs) to monitor conditions which are affected by breathing rate & depth

B. Hering-Breuer Inflation Reflex

- 1. Stretch receptors
 - a. Within walls of bronchi & bronchioles
 - b. Detect degree of inspiratory expansion
- 2. Inspiratory effect
 - a. Over-inflation will cause increased activity
 - b. Inhibitory nervous impulses to dorsal group
- C. Blood Pressure [discussed with cardiovascular system]
 - 1. Baroreceptors
 - a. Within walls of aortic arch & carotid sinus
 - b. Monitor blood pressure
 - 2. Vasomotor center
 - a. Within medulla controls blood pressure
 - b. Signals from baroreceptors
 - 3. Relation to breathing
 - a. Interconnections with respiratory center
 - b. BP influences efficiency of gas exchanges
 - c. Thoracic expansion & contraction directly affect BP
- D. Chemoreceptors
 - 1. Peripheral
 - a. Primarily within aortic & carotid bodies

- b. <u>Not</u> the same as baroreceptors
- c. Monitor blood PO₂, PCO₂ & pH
 - □ More important for PO₂
 - Direct medullary response to PCO₂ & pH is more effective [below]

d. Response

- □ Low PO₂ stimulates receptors
- Signals to respiratory center to increase breathing

e. Amounts

- □ No response until PO₂ falls below 60 mmHg ventilation would double
- □ Critical life-threatening level at 20-40 mmHg ventilation increases 6x
- f. Relation to PCO₂
 - \Box If PCO₂ increases PO₂ usually decreases
 - PCO₂ control responses will indirectly affect PO₂, due to breathing increase
 - □ Thus, low PO₂ & peripheral receptor response would not be a strong influence if PCO₂ was increased as well

2. Medulla

- a. Receptors for both CO₂ & pH of blood
- b. Response
 - High PCO₂ & low pH stimulates
 - Breathing center stimulated in turn
- c. PCO₂ amounts
 - Arterial PCO₂ of only 50 mmHg will cause 4x increase in ventilation
 - \Box PCO₂ of 80 mmHg will cause 10x increase

- d. pH amounts
 - □ Normal blood pH 7.4
 - □ Maximum 4x ventilatory increase, at pH of 7.0
 - □ Not as effective as PCO₂, due to poor diffusion across blood-brain barrier
- d. PCO₂ effects contrasted with PO₂
 - \Box More profound effect than changes in PO₂
 - \Box Pco₂ of 40 mmHg is only 0.5% saturation of blood, so changes are relatively of more consequence