INTRODUCTION

Urinary System Basics

- A. Concept
 - 1. Kidneys
 - 2. Ureters
 - 3. Urinary bladder
 - 4. Urethra
- B. Importance

Homeostasis

- 1. General meaning -- maintenance of life requirements within narrow tolerance limits, given continual variable influences.
- 2. Specific urinary application -- overall homeostasis of body fluids
 - a. Direct -- blood & ECF
 - b. Indirect -- ICF, from contact with ECF

C. Functions

- 1. Fluid balance [details later]
 - a. Volume maintenance
 - b. Solute amounts
 - c. Acid-base maintenance
 - d. Transport between ECF & ICF -- osmotic context
- 2. Excretion
 - a. Fluid balance -- in order to maintain homeostasis, elimination of excesses required
 - b. Toxicity -- elimination of toxins

Excretion

- A. Meaning
 - 1. Separation from body fluids & ejection out of body of metabolic waste products
 - 2. Must have been involved in metabolic reactions to be an excretion

B. Systems Represented

- 1. Urinary -- full-time, primary function
- 2. Integumentary -- part-time, but very significant function
- 3. Respiratory -- part-time, significant function
- 4. Digestive -- part-time, secondary function

C. Substances Excreted

- 1. General
 - a. Due to varying homeostatic needs, some substances which are considered valuable metabolites may at times be excreted
 - b. Other, usually toxic, substances are always excreted in greater quantities
- 2. Water -- from ingestion & cellular respiration
 - a. Urine
 - 1200-1400 ml/day
 - Less in hot weather & strenuous exercise
 - b. Skin, via sweat glands & diffusion
 - 450-750 ml/day
 - Up to 10x more in hot weather & exercise
 - c. Expired as water vapor
 - 350-450 ml/day
 - May double during exercise
 - d. Feces -- 100-150 ml/day under all conditions

- 3. CO₂ -- from cellular respiration
 - a. Overwhelming majority expired
 - b. Some via urine, feces & sweat -- CaCO₃
- 4. Nitrogenous organic compounds
 - a. From amino acid metabolism in the liver
 - General
 - Most via urine
 - Some via bile & sweat
 - Urea -- 90% of total
 - Urate (uric acid)
 - Ammonia (NH₃) -- quite toxic
 - Excess amino acids -- only 1-2 g/day
 - b. From muscle metabolism -- creatinine
 - From unique high energy creatine-PO₄
 - Some excreted via urine
 - c. From benzoic acid detoxification
 - Hippuric acid -- benzoic acid + glycine
 - Via urine
- 5. Non-nitrogenous organic compounds
 - a. General
 - Most via urine
 - Slight via sweat & oil glands, & feces
 - Quite variable in types & amounts
 - b. Glucose -- barely perceptible amounts
 - c. Ketone bodies
 - From fatty acid metabolism

- Minute amounts
- d. Oxalates -- small amounts
- e. Citrate -- small amounts
- f. Vitamins -- excess water soluble
- g. Hormones
- h. Enzymes -- only a few
- 6. Inorganic salts (electrolytes)
 - a. General
 - Most via urine -- exceptions noted
 - Some in sweat & feces
 - b. In decreasing amount:

Chloride Sodium Potassium Sulfate Phosphate Calcium -- more via feces Magnesium -- more via feces

- 7. Heat
 - a. Not a chemical substance, but there is elimination of the excess not utilized to maintain body temperature
 - b. From cellular respiration
 - c. Most via skin
 - Sweat carries away more heat than dry skin
 - Extra vessels deliver more heated blood
 - d. Some via urine, feces & expired air
- D. Basic Processes [all details later]
 - 1. Filtration
 - a. Removes majority of substances from blood
 - b. Substances now in space which eventually leads outside of

the body

- 2. Reabsorption
 - a. Removal of most components from what was filtered & return to body fluids
 - b. Selectivity is its importance
- 3. Secretion
 - a. Addition of extra amounts of some substances to what was filtered
 - b. From body fluids via different route

Gross Kidney Structure [details from lab]

- A. Regions
 - 1. Cortex
 - a. Outer
 - b. Columns
 - 2. Medulla
 - a. Inner
 - b. Pyramids
 - Divisions -- 8-15
 - Apex -- papilla
- B. Urine Collecting Structures
 - 1. Calyces
 - a. Minor
 - One per pyramid -- funnel-shaped
 - Receives urine from papillary ducts [later]
 - b. Major -- confluence of several minor

- 2. Pelvis -- receives major calyces
- 3. Ureter
 - a. Tube from narrowing of pelvis
 - b. Exits kidney through hilus
 - c. Represents duct for entire kidney
 - d. Takes urine to bladder
- C. Blood vessels
 - 1. Renal artery & vein
 - 2. Interlobar arteries & veins
 - a. Branches from renals
 - b. Run through columns
 - 3. Arcuate arteries & veins
 - a. Perpendicular branches from interlobars
 - b. Run along cortical-medullary border
 - 4. Interlobular arteries & veins
 - a. Perpendicular branches from arcuates
 - b. Run through cortex outwardly
 - 5. Other branches from interlobulars
 - a. Run through cortex and under capsule
 - b. Example -- intralobulars

Microscopic Kidney Structure

- A. Nephron
 - 1. General
 - a. Basic structural & functional unit
 - b. 1.5 million per kidney

- c. Essentially a tubular glandular unit
- d. 2 types
 - Cortical
 - Majority
 - Shorter -- 35 mm
 - Mostly within cortex
 - Juxtamedullary
 - Longer -- 50 mm
 - Over half its length runs through pyramid, almost to apex (papilla)
- 2. Bowman's (renal) capsule
 - a. Double-walled rounded cup-like
 - b. 200 µm across
 - c. Squamous parietal wall
 - d. Visceral wall of unique podocytes -- cling to & follow contours of enclosed glomerulus [not part of nephron per se -- later]
 - e. Beginning portion
- 3. Proximal convoluted tubule
 - a. About 15 mm (L) x 60 µm (D)
 - b. Simple cuboidal cells with microvilli
 - c. Completely within cortex
- 4. Thick descending (straight proximal) tubule
 - a. About 2 mm (L) x 30 μ m (D)
 - b. Low cuboidal cells with microvilli
 - c. Enters medulla in juxtamedullary nephrons
- 5. Loop of Henle (thin portions)

- a. General
 - About 5-15 mm (L) x 15 µm (D)
 - Longer in juxtamedullary nephrons
 - Squamous cells
- b. Descending portion -- longer
- c. Ascending portion -- shorter
- 6. Thick ascending (straight distal) tubule
 - a. About 7 mm (L) x 60 µm (D)
 - b. Cuboidal cells with short microvilli
 - c. Runs back into cortex
- 7. Distal convoluted tubule
 - a. About 10 mm (L) x 60 µm (D)
 - b. Cuboidal cells with sparse (beginning) to no microvilli (end)
 - c. Last portion of nephron

B. Excretory Ducts

- 1. General
 - a. Take liquid from nephron
 - b. Chemical adjustments to produce final urine
 - c. Pass urine to minor calyces
 - d. Total length of one pathway of this highly branched & interconnected complex -- 20 mm
- 2. Collecting tubule
 - a. Begins at end of distal convoluted tubule
 - b. Same diameter as DCT
 - c. Simple cuboidal cells
- 3. Collecting ducts

- a. Smallest formed by confluence of several collecting tubules
- b. Several levels of branching to larger ducts
- c. Up to 100 µm diameter
- d. Cells from simple cuboidal to simple columnar
- 4. Papillary duct (of Bellini)
 - a. Largest ducts -- confluence of several of largest collecting ducts
 - b. 200 µm diameter
 - c. 10-25 per papilla of a pyramid
 - d. Final ducts empty into minor calyx
- C. Capillaries & Arterioles
 - 1. General
 - a. Supply nephron with blood for filtering
 - b. Receptacle for reabsorbed substances
 - c. Source for secreted substances
 - 2. Glomerulus
 - a. Balled-up capillary bed
 - b. Nestled within Bowman's capsule -- tightly adherent to visceral wall
 - c. Special lining squamous cells -- fenestrated & extremely permeable
 - 3. Afferent arteriole
 - a. Branches from "other" arteries after interlobular
 - b. Joins glomerulus
 - 4. Efferent arteriole
 - a. Joins opposite end of glomerulus
 - b. Carries blood from glomerulus

- c. Exception to venule draining capillaries
- d. Smaller than afferent
- 5. Peritubular capillaries
 - a. Capillary bed surrounding cortical nephron portions
 - b. Variations in 2 nephron types
 - Cortical -- around straight proximal & distal, & most of thin loop of Henle
 - Juxtamedullary -- only around convoluted portions
 - c. Receive blood from efferent arterioles
 - d. Join venules which eventually lead to interlobular vein
- 6. Vasa recta
 - a. Only in association with juxtamedullary nephrons
 - b. Origin from efferent arterioles, just like peritubular
 - c. Descend into medulla, paralleling straight tubule portions & thin loop of Henle
 - d. Hairpin turn, just like loop of Henle
 - e. Lateral interconnections among vasa recta form plexuses in medulla
 - e. Join same venules as peritubular capillaries

D. Renal (Malpighian) Corpuscle

- 1. Concept -- term applied to glomerulus & the attached Bowman' capsule which surrounds it
- 2. Significance -- represents vital link between nephron & its initial blood supply

URINE FORMATION

Filtration

- A. Introduction
 - 1. Location -- renal corpuscles
 - 2. Concept
 - a. Filtration (diffusion under pressure) of substances from blood circulating through glomerulus into capsular space of nephron.
 - b. Involves passage through glomerular endothelium, a basement membrane & the capsule's visceral wall of podocytes.
 - 3. Significance
 - a. Rapid removal of diffusible substances from blood
 - b. No selectivity as to importance -- basically just size
 - c. Later, more leisurely selective processes in other parts of nephron

B. Ultrafiltrate

- 1. Concept -- filtrate contains same concentration of substances as blood
- 2. Significance -- this direct quantitative reflection permits kidneys to accurately determine the homeostatic fates of the various substances
- 3. Exclusions -- non-permeable materials
 - a. Formed elements
 - b. Plasma proteins
 - c. Lipids -- e.g. cyclomicrons
- C. Physical Mechanisms
 - 1. Glomerular endothelium

- a. Many large fenestrations
- b. Only formed elements not permeable
- 2. Basement membrane
 - a. Ionized -- highly negative
 - b. Repels plasma proteins -- negatively ionized
- 3. Visceral wall of capsule
 - a. Podocytes
 - Branching major & minor processes -- wrap around glomerulus
 - Terminals -- feet (pedicels)
 - Feet from different podocytes interdigitate
 - b. Diffusion through gaps between feet
- D. Pressures Responsible
 - 1. Blood
 - a. Glomerular hydrostatic (blood) pressure at afferent arteriolar end about 60 mmHg
 - b. Much higher than body's other capillaries
 - c. This force necessary to drive filtration
 - 2. Colloid osmotic
 - a. From blood's non-diffusible plasma proteins -- about 25 mmHg
 - b. Opposes blood pressure & filtration
 - 3. Capsular hydrostatic
 - a. From filtrate constantly within capsule, between visceral & parietal walls -- about 10 mmHg
 - b. Opposes filtration
 - 4. Net filtration pressure
 - a. Blood (colloid osmotic + capsular)
 - b. 60 mmHg (25 mmHg + 10 mmHg) = 25 mmHg

- E. Rate
 - 1. Basic
 - a. 125 ml/min from all nephrons in both kidneys
 - b. 180 L per day
 - c. Represents 20% of the plasma
 - 2. Variations
 - a. Sex -- lower in women
 - b. Variable under different conditions in same person
- F. Unique Variables
 - 1. General -- necessary to form sufficient filtrate quickly
 - 2. To maintain high net filtration pressure
 - a. Glomerulus between 2 arterioles
 - Only place in body
 - Efferent (2nd) arteriole's resistance helps maintain higher pressure than venule would
 - b. Difference in afferent/efferent diameters
 - Efferent smaller
 - Increased resistance to flow raises pressure
 - c. Renal blood pressure -- higher than other organs
 - 3. Permeability -- glomerular endothelium 100x more than other capillaries

Reabsorption

- A. Introduction
 - 1. Concept -- selective removal of substances from filtrate
 - 2. Amount -- of 180 L/day filtrate, only 1.0-1.8 L urine

- 3. Locations
 - a. From filtrate in rest of nephron & collecting lumen -- mostly proximal
 - b. To interstitial (tissue) fluid around nephron
 - c. Into peritubular capillaries & vasa recta to be carried away
- 4. Significance
 - a. Filtration was massive, but nonselective
 - b. Reabsorption determines urine composition -- mostly [secretion later]
 - c. Not inefficient, despite having to reverse most of filtration -- [evidence later -- counter-current]

B. Water

- 1. General
 - a. Normally 97-99% reabsorbed from filtrate
 - b. 65% from proximal convoluted & straight
- 2. Obligatory
 - a. This <u>must</u> be reabsorbed
 - b. Majority -- from proximal
 - c. Passive -- from osmotic gradient created by reabsorption of solutes from filtrate [details later]
- 3. Facultative
 - a. Variable amounts, depending on homeostatic needs
 - b. From distal convoluted & collecting
 - c. Controlled by ADH
 - Permeability in direct proportion
 - Reason for osmotic gradient [later -- counter-current]
 - d. Diabetes insipidus
 - Absence of ADH

- Excretion of 15-20 L/day of mostly aqueous urine
- 4. Membrane mechanisms
 - a. Aquaporins water channels
 - b. Membrane proteins all body cells have these
 - c. 4 subunits with channel between
 - d. 8 distinct types some also handle small solutes (e.g. glycerol)
 - e. Cells of proximal convoluted and straight, and descending just thin follow sodium gradient
 - f. Collecting duct cells regulated by ADH

C. Minerals

- 1. Sodium
 - a. 99% reabsorbed from filtrate
 - b. Mechanisms
 - Actively transported from tubule cell cytoplasm into interstitial fluid
 - Concentration gradient causes diffusion from tubule lumen -- most facilitated by carrier, which makes it more efficient
 - c. Significance
 - Its movement is basis for co-transport of other solutes & part of osmotic reabsorption of water
 - Central role in counter-current mechanism [later]
 - d. Variations in nephron segments
 - Proximal -- as described above
 - Distal -- variable
 - Less permeable cell membranes
 - Hormonal control -- aldosterone

- 2. Chloride
 - a. 99% reabsorbed
 - b. Mechanisms
 - Most directly follows sodium, to maintain electrical balance
 - Some by co-transport
- 3. Potassium
 - a. Some reabsorbed
 - b. Mechanisms
 - Due to Na⁺/K⁺ pump, transported opposite sodium -into tubule cells from interstitial fluid
 - Tends to diffuse back out through sides at intercellular junctions, though
- 4. Calcium
 - a. Most reabsorbed
 - b. Mechanism -- co-transport
- 5. Magnesium
 - a. Some reabsorbed
 - b. Mechanism -- co-transport
- 6. Bicarbonate
 - a. Almost all reabsorbed
 - b. Mechanism -- complicated
 - Tubule lumen -- CO₂ diffuses out
 - In cell -- $CO_2 + H_2O = H_2CO_3 = H^+ + HCO_3^-$
 - Bicarbonate into interstitium by co-transport
- 7. Others
 - a. Phosphate, sulfate & nitrate -- some reabsorbed
 - b. Mechanism -- co-transport

D. Nitrogenous Wastes

- 1. Urea
 - a. 50% reabsorbed
 - b. Mechanism -- passive, follows water
- 2. Urate
 - a. 98% reabsorbed
 - b. Mechanism -- co-transport
- 3. Creatinine
 - a. <u>None</u> is reabsorbed
 - b. [see below -- secretion]
- E. Organic Nutrients
 - 1. General
 - a. Glucose, amino acids, vitamins (water soluble), & ketone bodies
 - b. Normal amounts completely reabsorbed -- vital
 - c. Mechanisms
 - Co-transport from lumen into tubule cells
 - Facilitated diffusion from cells into interstitium
 - 2. Proteins
 - a. Completely reabsorbed
 - b. Mechanism -- special handling, since non-permeable
 - From tubule lumen by pinocytosis
 - Hydrolyzed into amino acids -- now handled as already described

3. Sucrose, oxalates & citrates

None reabsorbed

Secretion

- A. Introduction
 - 1. Concept
 - a. Addition to filtrate of substances which were not filtered
 - b. Opposite direction from reabsorption
 - From peritubular capillary blood
 - Into interstitial fluid
 - Enters tubule lumen
 - 2. Locations
 - a. Distal convoluted tubule
 - b. Collecting tubule & duct
 - 3. Significance
 - a. Permits maximum excretion of certain substances, making up for ultrafiltrate inadequacy
 - b. Some toxic substances cannot be filtered

B. Substances

- 1. Ammonia
 - a. Too toxic for body fluids
 - b. NH_3 + glutamic acid = glutamine (nontoxic)
 - c. DCT reverses reaction
 - d. Excreted as ammonium ion $NH_3 + H^+ = NH_4^+$
- 2. Hippuric acid
 - a. Benzoates -- toxic

- b. Benzoic acid (e.g.) + glycine = hippuric acid (nontoxic)
- c. DCT reverses reaction
- 3. Creatinine
 - a. None was reabsorbed -- secretion adds to amount excreted in urine
 - b. Mechanism -- active transport
- 4. Potassium & hydrogen
 - a. DCT & collecting tubules
 - b. Mechanisms
 - Counter-transport -- earlier portions
 - From active sodium reabsorption
 - More negative tubule lumen attracts positive ions
 - Active transport -- latter portions
 - K⁺ -- aldosterone control
 - H⁺ -- special cells, for pH homeostasis
- 5. Others
 - a. e.g. -- organic acids & bases; neurotransmitters
 - b. Mechanism -- active transport
- 6. Abnormal
 - a. e.g. -- drugs
 - b. Mechanism -- active transport

Counter-current Mechanism

- A. Introduction
 - 1. Urine/filtrate difference
 - a. Urine typically hyperosmotic to original filtrate
 - b. Most water usually needed in body fluids
 - 2. Progressive concentration
 - a. Would seem to occur from capsule to collecting
 - b. Not possible
 - Would require active transport of water
 - Osmotic gradient 900x greater than exists
 - 3. Variable filtrate osmotic conditions

[all will be compared with original capsular filtrate]

- a. Isosmotic (no change) -- PCT & thick descending
- b. Hyperosmotic (more concentrated) -- loop of Henle
- c. Isosmotic (same as filtrate) -- thick ascending
- d. Hypoosmotic (more dilute) -- DCT
- e. Hyperosmotic -- latter DCT & collecting
- 4. Significance
 - a. Permits concentration of solute wastes
 - b. Conserves water
 - c. Accomplished via simple fluid principles
 - d. Variable due to hormonal influences -- more dilute urine <u>can</u> be produced if excess water excretion needed [later]
- B. Underlying Principles
 - 1. Concentration gradients

- a. Increased when gong from cortex into medulla
- b. Decreased when going from medulla into cortex
- 2. Innate behavior from physical relationships
 - a. Physical setup
 - Parallel tubes
 - Hairpin connections
 - Solution flowing in opposite directions
 - Semipermeable walls
 - Fluid surrounding tubes

b. Results

- Setup will cause a small concentration difference to be multiplied continuously through the tubes
- <u>Must</u> be this type of setup for production of concentrated urine -- straight, or differently configured tubes would work poorly or not at all
- 3. Gradient maintenance
 - a. Loop of Henle
 - Establishes gradient
 - From descending/ascending differences [later]
 - b. Vasa recta
 - Maintains gradient established by loop
 - Own separate counter-current multiplier -- coordinated with nephron/collecting, though
 - c. Collecting tubule & ducts
 - Finish the process, producing final urine
 - Variable, due to ADH [later]
- 4. Osmotic counter "currents"
 - a. Entire mechanism based on osmotic currents

- b. Created by continuously circulating filtrate, interstitial fluid & blood -- form positive feedback loops
- c. Opposite currents in descending & collecting as compared with ascending
- d. Opposite currents in ascending & descending limbs of vasa recta
- C. Mechanisms of Action
 - 1. Proximal convoluted tubule
 - a. Results
 - 65⁺% volume reduction of capsular filtrate
 - Proportional, though -- isosmotic to filtrate
 - b. Events
 - Active sodium (with chloride) reabsorption
 - Passive osmosis of water -- follows sodium
 - 2. Ascending thin & thick
 - a. This is the next logical step
 - Filtrate itself is next in descending portions
 - Ascending events control those in descending
 - b. Results
 - Change to isosmotic -- was hyper- at bottom of loop
 - Hypoosmotic by DCT
 - c. Events
 - Active chloride (with sodium) transport out
 - No osmosis follows -- impermeable to water
 - 3. Descending thick & thin
 - a. Results -- very hyperosmotic by bottom of loop
 - b. Events
 - Sodium diffuses in

- Water diffuses out by osmosis
- c. Cause -- hyperosmotic medullary fluid [later]
- 4. Distal convoluted & collecting tubules
 - a. Results
 - Progressively less hypoosmotic
 - Variable -- from hypo- to hyperosmotic
 - b. Events
 - Osmosis out -- no longer impermeable
 - ADH responsible for variable amount -- direct proportion
 - c. Causes
 - Active sodium (with chloride) transport out
 - Hyperosmotic medullary fluid attracts water
- 5. Medullary tissue fluid
 - a. Result
 - Perpetually kept hyperosmotic
 - More hyperosmotic higher to lower
 - b. Causes
 - Active salt transport out of thick ascending
 - Active salt transport out of collecting
 - Passive salt transport out of thin descending
 - Passive urea transport out of collecting -- follows water, from ADH increase

[

- Vasa recta leaves behind excess sodium later]
- 6. Vasa recta
 - a. Result -- prevents medullary blood from removing excess solutes

- b. Causes
 - Sluggish blood flow -- only 1-2% of kidney total
 - Counter-current exchange mechanism
 - Removes excess water from medulla -- recall diffusion from descending
 - Leaves behind excess sodium
- D. Summary
 - 1. Production of concentrated urine

- a. Basic counter-current mechanism
- b. Increased ADH
- 2. Production of dilute urine
 - a. Basic counter-current mechanism
 - b. Decreased ADH

MICTURITION

- A. Concept
 - 1. Expulsion of urine from the bladder
 - 2. Commonly termed urination or voiding
- B. Mechanisms
 - 1. Muscles
 - a. Detrusor -- general smooth muscle of bladder wall
 - b. Internal urethral sphincter
 - Smooth muscle
 - Around beginning of urethra

- c. External urethral sphincter
 - Skeletal muscle
 - Below internal sphincter
- d. Rectus abdominis
- 2. Volumes
 - a. 200-300 ml -- threshold for initiation
 - b. 500 ml
 - Total effective capacity
 - Very little ability to retain more without considerable discomfort
- 3. Pressure receptors
 - a. Within bladder wall
 - b. Respond to stretch from filling
 - c. Impulses to sacral segments of spinal cord
 - d. Initiate reflex muscle responses eventually leading to micturition
 - e. May completely occur locally -- brain <u>may</u> intervene
- 4. Muscle responses
 - a. Detrusor
 - Parasympathetic impulses from spinal cord
 - Wave-like rhythmic contractions
 - Towards urethral outlet
 - Periodic & widespread until maximum capacity reached
 - b. Internal sphincter

.

- Remains contracted via sacral reflex to prevent micturition
- Relaxation under different conditions
 - <500 ml -- only when external sphincter relaxed

- >500 ml -- from intense detrusor contractions
- c. External sphincter

- Remains contracted via sacral reflex -- inhibition causes relaxation
- Relaxation under different conditions
 - <500 ml -- conscious decision</p>
 - >500 ml -- unconscious, along with internal sphincter
- d. Rectus abdominis
 - Contracted to increase intra-abdominal pressure
 - Pressure on full bladder assists
- 5. Brain centers
 - a. Cerebral cortex
 - Responsible for learned reflex which contracts external sphincter
 - Initiates conscious relaxation of external sphincter for micturition
 - Can override spinal micturition reflex, if volume not extreme
 - b. Brainstem
 - Pons & medulla
 - Unconscious facilitation or inhibition of spinal reflex
- C. Pathology
 - 1. Incontinence
 - a. Concept
 - Loss of bladder control
 - From slight to inability to retain any urine

- b. Normal in infants -- insufficient development of nervous pathways between brain & sacral cord
- c. Abnormal
 - Several sites of damage -- bladder, cord or brain
 - Would determine severity
- 2. Retention
 - a. Concept -- inability to void
 - b. Causes
 - Obstruction
 - Spasmodic sphincter contraction
 - Nerve damage
 - Psychological factors -- e.g. stress

FLUID BALANCE & DYNAMICS

Blood Pressure Regulation -- Urinary Related

- A. Autonomic Nervous Control
 - 1. General
 - a. Affects kidneys only -- rest of body unaffected
 - b. Sympathetic division alone -- parasympathetic not utilized to produce opposite effects
 - 2. Pressure increase
 - a. Moderate impulse level
 - b. Afferent & efferent constricted proportionately
 - c. Vasoconstriction raises glomerular pressure
 - 3. Pressure decrease
 - a. Intense impulse level

- b. Afferent more constricted than efferent
- c. Arteriolar diameters closer to the same
- d. Pressure lowered -- size disparity negated

B. Autoregulation

- 1. General
 - a. Local -- not from outside (e.g. nervous) influences
 - b. Purpose -- maintains constant effective filtration rate
 - c. Mechanism
 - Involves nephron & arterioles
 - Accomplished chemically
 - d. Significance
 - More important than nervous
 - More attuned to needs
 - More effective (accurate)
- 2. Structure -- juxtaglomerular apparatus (JGA) or complex
 - a. Indistinct -- merger of 3 parts of larger structures
 - First part of distal convoluted tubule
 - Afferent arteriole
 - Efferent arteriole
 - b. Each JGA from parts of same nephron/corpuscle
 - c. Modified cells in wall of contact areas
 - Macula densa -- distal tubule
 - Juxtaglomerular cells -- arterioles
- 3. Mechanisms
 - a. Sodium & chloride levels monitored -- distal filtrate

- Too low if insufficient filtration pressure -- too much reabsorption in ascending
- Too high if excessive filtration pressure -- insufficient reabsorption in ascending
- b. To increase pressure & filtration rate
 - Afferent arteriole dilated by macula densa
 - Efferent arteriole constricted by juxtaglomerular cells -indirect
 - Increased renin secretion into blood
 - Plasma angiotensinogen converted to angiotensin
 - Angiotensin targets efferent arteriole
- c. To decrease pressure & filtration rate
 - Afferent arteriole constricted
 - Efferent arteriole dilated
- C. Systemic Control
 - 1. General
 - a. Overall BP changes throughout body
 - b. Kidneys affected as well
 - c. Sympathetic & autoregulation can counteract
 - 2. Causes
 - a. Cardiac output influences on BP
 - b. Peripheral resistance -- e.g. widespread autonomic
 - c. Respiratory needs requiring BP adjustments

Osmotic Pressure Regulation

- A. Scope
 - 1. Affects the entire body
 - 2. Important homeostatic mechanism -- controls ECF/ICF interchanges
 - 3. Intricate & interrelated -- very simple consideration here
- B. Increases
 - 1. Concept -- hyperosmotic condition in body fluids
 - 2. Causes
 - a. Solute retention
 - Ingestion -- more salt (solute) intake
 - Kidney diseases -- excessive reabsorption
 - Hormonal
 - Hyperglycemia
 - Aldosterone hypersecretion & no ADH change
 -- usually vary together
 - b. Water loss
 - Ingestion -- too little intake
 - Fluid loss -- solutes lost as well, but water causes more dramatic effects
 - Diarrhea
 - Vomiting
 - Excess sweating
 - Hormonal
 - Hyperglycemia -- water drawn from tissues
 - Hyposecretion of ADH -- diabetes insipidus

C. Decreases

- 1. Concept -- hypoosmotic condition in body fluids
- 2. Causes
 - a. Solute loss
 - Ingestion -- insufficient salt (solute) intake
 - Kidney infection -- e.g. glomerulonephritis
 - Hormonal
 - Hypoglycemia
 - Aldosterone hyposecretion
 - b. Water retention
 - Ingestion -- excess intake
 - Kidney failure
 - Hormonal -- ADH hypersecretion
- D. Control Mechanisms
 - 1. Osmoreceptors
 - a. Within hypothalamus
 - b. Monitor osmotic pressure of body fluids
 - c. Activity level
 - Hyperosmotic causes more activity
 - Hypoosmotic causes less activity
 - 2. Antidiuretic hormone (ADH)
 - a. Secreted by hypothalamus
 - b. Stored within pars nervosa
 - c. Amounts
 - More from increased osmoreceptor activity

- Less from decreased osmoreceptor activity
- 3. Water reabsorption
 - a. In DCT & collecting tubules/ducts
 - b. Direct proportion with ADH amount
 - More reabsorption dilutes hyperosmotic body fluids
 - Less reabsorption excretes excess water from hypoosmotic body fluids
- 4. Drinking center
 - a. Within hypothalamus
 - b. Controls thirst
 - c. Precise amount needed consumed
 - Immediate relief -- prevents further desire
 - Takes 30⁺ min. for ingested water to actually dilute body fluids, though

Extracellular Fluid Volume Regulation

- A. Scope
 - 1.
 - 2. [same as for osmotic pressure]
 - 3.
 - 4. Not any particular component of fluids as in osmotic changes -- the water <u>is</u> of critical importance, though
- B. Increases
 - 1. General -- all produce solute <u>and</u> water retention
 - 2. Ingestion
 - a. Increased solutes & water

- b. Malnutrition
- 3. Hormonal -- aldosterone & ADH hypersecretion
- 4. Kidney diseases -- e.g. chronic renal failure (insufficiency)
- 5. Cardiovascular diseases
 - a. Hypertension
 - b. Congestive heart failure
- 6. Drugs
 - a. All would increase ADH
 - b. e.g. -- nicotine, morphine, barbiturates, anesthetics

C. Decreases

- 1. General -- caused by <u>any</u> general body fluid loss
- 2. Ingestion -- general decrease (e.g. undernourishment)
- 3. Hormonal -- aldosterone &/or ADH hyposecretion
- 4. Diseases
 - a. Kidney reabsorptive deficiencies
 - b. Systemic infections
- 5. Fluid losses
 - a. Excessive sweating or severe burns
 - b. Vomiting or diarrhea
 - c. Hyperventilation
- 6. Drugs
 - a. All diuretics
 - b. e.g. -- alcohol, caffeine, lithium

- D. Control Mechanisms [Example of fluid volume decrease]
 - 1. Sodium reabsorption
 - a. Renin -- secretion from JGA
 - b. Angiotensin I -- renin converts from angiotensinogen
 - c. Angiotensin II
 - More active form
 - Derived from angiotensin I
 - Converted by lung enzyme
 - d. Aldosterone
 - Secretion stimulated by angiotensin II
 - Increased sodium/chloride reabsorption
 - e. Atrial natriuretic factor
 - Secreted by heart wall
 - Proportionate with blood volume
 - Inhibits sodium/chloride reabsorption
 - f. Salt appetite
 - Hypothalamic center
 - Regulates desire to consume salt
 - More active under 2 body fluid conditions
 - Less sodium concentration
 - Decreased fluid volume
 - 2. Water reabsorption
 - a. Osmoreceptors
 - Detect hyperosmotic body fluids
 - Gradient purposely caused by sodium/chloride reabsorption

- b. ADH
 - Secretion increased
 - Water reabsorption increased
 - Counteracts hyperosmolality
 - Increases body fluids -- ultimate goal

Electrolyte Balance

- A. General
 - 1. Scope
 - a. Principal ions only
 - b. Others important -- e.g. phosphate, sulfate
 - 2. General effects
 - a. Determine water distribution in body
 - b. Acid-base balance
 - c. Cell membrane irritability -- nerve & muscle
- B. Potassium
 - 1. Functions -- principal <u>intracellular</u> cation
 - a. Cytoplasmic osmotic pressure maintenance
 - b. Membrane electrical potentials -- nerve & muscle
 - c. Enzyme activation
 - 2. Influences upon potassium
 - a. Aldosterone
 - Sodium reabsorption causes potassium secretion
 - Excess potassium increases aldosterone
 - b. pH

- Acidosis causes more K⁺ reabsorption
- To cause secretion of H⁺ via ion exchange
- c. Sodium
 - Basically moves opposite from potassium
 - Kidneys handle Na⁺ better -- if both low, it is more reabsorbed
- C. Sodium
 - 1. Functions -- principal <u>extracellular</u> cation
 - a. Extracellular osmotic pressure maintenance -- tissue fluid & blood
 - b. Sodium pump
 - Establishes basic membrane gradients
 - Permits transport of other substances
 - c. Membrane electrical potentials -- nerve & muscle
 - 2. Influences upon sodium
 - a. Aldosterone -- [previously covered]
 - b. Atrial natriuretic factor -- [previously covered]
 - c. Glomerular filtration rate (GFR)
 - Indirect proportion for GFR : sodium excretion
 - Conserves sodium when filtration in excess
 - d. Other solutes -- glucose (e.g.)
 - Hyperglycemia leads to glycosuria
 - Sodium displaced by glucose
 - More sodium excretion than desirable

- D. Calcium
 - 1. Functions -- most abundant cation (most in bones)
 - a. Stabilizes membranes
 - b. Regulates muscle contraction -- intracellularly
 - c. Enzyme regulation -- as co-factor
 - d. Adherence of adjacent cells
 - 2. Influences upon calcium
 - a. Hormonal
 - PTH -- [previously covered]
 - Thyrocalcitonin -- [previously covered]
 - b. Digestive absorption
 - Vitamin D enhances
 - Phosphates inhibit
 - c. Excretion
 - Most via feces -- vitamin D & phosphate control
 - Some via urine -- handled like sodium, under PTH influence
- E. Magnesium
 - 1. Functions -- equally distributed
 - a. Membrane stabilization -- nerve & muscle
 - b. Enzyme co-factor -- e.g. ATPase & peptidases
 - c. Calcium antagonist -- often
 - 2. Influences upon magnesium
 - a. Hormonal
 - T₃, T₄, GH & PTH -- [previously covered]
 - Via movements in/out of cells & bones

- b. Excretion
 - Most reabsorbed -- PTH control
 - Direct nephron effect -- excess excreted

F. Chloride

- 1. Functions -- principal <u>extracellular</u> anion
 - a. Counteracts cations
 - b. Osmotic pressure maintenance
 - c. Acid-base balance -- usually via HCI
- 2. Influences upon chloride
 - a. Sodium -- follow each other (except nerve/muscle)
 - b. Digestive -- part of gastric HCI
 - c. Bicarbonate
 - Normally balance each other
 - Excess Cl⁻ loss (e.g.) -- alkalosis

Acid-Base Balance

- A. Extracellular Buffering System
 - 1. Dual function -- absorbs excess ions of opposite types
 - a. Acidic -- H⁺
 - b. Basic -- e.g. OH⁻
 - 2. Systems utilized
 - a. Bicarbonate -- mixture of H₂CO₃ & NaHCO₃
 - b. Phosphate
 - c. Protein
 - 3. Mechanism -- using bicarbonate system
 - a. Acid buffering

 $HCL + NaHCO_3 = H_2CO_3 + NaCl$

b. Basic buffering

NaOH + $H_2CO_3 = NaHCO_3 + H_2O$

- B. Lung Excretion
 - 1. Frees CO₂ from blood in carbonic acid form
 - 2. Dysfunctions
 - a. Respiratory acidosis
 - From hypoventilation
 - Normal correction -- breathing control system increases ventilation
 - b. Respiratory alkalosis
 - From hyperventilation
 - Uncommon
- C. Kidney Excretion
 - 1. Bicarbonate -- adjusted by varying reabsorption
 - 2. Hydrogen
 - a. Exchanged for sodium [previously covered]
 - b. Secondary frees bicarbonate which was utilized for neutralizing $H^{\scriptscriptstyle +}$ in body fluids
 - c. H⁺ neutralized within urine
 - Combined with phosphate
 - Combines with ammonia -- ties up potentially harmful ammonia as well