MONTGOMERY COLLEGE - Germantown Campus

Mathematics & Statistics Department

Course Syllabus

I. Instructor Information

Professor: Dr. Zhou Dong Email: Zhou.Dong@MontgomeryCollege.edu Phone: (240) 567-7810 Office: HT 134 Mail box: HT 314 Office Hours: MWF 11:00 am – 12:00 pm, or by appointment <u>Click here to make a virtual</u> <u>appointment</u>

II. General Course Information

HONR 265 Independent Study-Tutorial in Mathematics/Computer Science

This tutorial emphasizes independent studies in areas not listed among the credit courses in mathematics. Appropriate mathematics/computer science faculty tutor individual students in specific studies, e.g., in computer science, the study and comparison of modern programming languages; in mathematics, topology, complex analysis, abstract algebra, and logic. Students may repeat this course provided that each time it is taken, a different topic is covered.

3 Semester Hours

PREREQUISITE:

Completion of at least 12 college credits, a 3.4 grade point average or higher, a grade of A or B in ENGL 101 or ENGL 101A.

CRN 24633: HONR 265CG Combinatorial Game Theory

The course will introduce students to Combinatorial Game Theory. The course will cover the foundations of the theory and basic techniques for analyzing combinatorial games, including analysis of classic examples such as Nim. Students will choose a game to analyze on their own, document their research, and present their findings.

Math Requirement: Completion of MATH 181 Programming Requirement: Proficiency in Python or Java

Fall 2024 MWF 10:00 am – 10:50 am HT 104

NOTE: HONR courses do not meet General Education requirements. In addition, the transferability of HONR courses is determined by the transfer institution. It is recommended that students planning to transfer complete a degree audit to verify that this course complies with new Program of Study and Financial Aid Guidelines.

III. Specific Outcomes

HONR 265 - Upon completion of this course, a student will be able to:

- Demonstrate an understanding of the concepts, terminology, and methodologies associated with a given topic in mathematics and/or computer science.
- Demonstrate an understanding of the relevant mathematics or computer science associated with the special topic of the course.
- Conduct research relevant to the selected topic or research a current and relevant topic.
- Communicate concepts effectively in both oral and written presentations.

Combinatorial Game Theory - Upon completion of this course, a student will be able to:

- Explain what is a combinatorial game
- Classify combinatorial games by their properties
- Describe the techniques for analyzing combinatorial games
- Conduct analysis of combinatorial games and present findings

IV. Text and Supplies

Required Text:

• Lessons in Play: An Introduction to Combinatorial Game Theory, Second Edition by Michael H. Albert, Richard J. Nowakowski, David Wolfe <u>www.lessonsinplay.com</u>

Other resources:

- Knop's Courses Introduction to Combinatorial Game Theory <u>https://www.youtube.com/watch?v=DbCKHPlMN2c&list=PLxYr6TaF_SDV5r6r</u> <u>mI0LDxuO48FPFb6Rk</u>
- Coursera Games Without Chance: Combinatorial Game Theory <u>https://www.coursera.org/learn/combinatorial-game-theory</u>
- Final Answers Mathematical Games (2 Players) http://www.numericana.com/answer/games.htm
- Erik Demaine's Combinatorial Game Theory webpage <u>https://erikdemaine.org/games/</u>
- David Eppstein's Combinatorial Game Theory webpage https://www.ics.uci.edu/~eppstein/cgt/
- Jeff Erickson's Combinatorial Game Theory webpage <u>http://jeffe.cs.illinois.edu/mathgames.html</u>
- Unsolved Problems in Combinatorial Games <u>http://library.msri.org/books/Book42/files/guy.pdf</u>

V. Grading

A. Requirements

The student is required to

- Attend and participate in all class meetings and workshops
- Complete readings and homework as assigned
- Complete a research project on a combinatorial game
 - Keep research log of a minimum of 10 hours of research activity per week
 - Attend weekly research meetings individually with the professor and in research groups
- Present findings informally during research group meetings and formally at the end of the semester

B. Course Grade

Attendance and	20%
Participation	
Homework	20%
Research Project	40%
Presentation	20%

 $\begin{array}{l} A = 90\% - 100\% \\ B = 80\% - 90\% \\ C = 70\% - 80\% \\ D = 60\% - 70\% \\ F < 60\% \end{array}$

Research Activity

VI. Student Code of Conduct and Collegewide Policies and Procedures <u>http://cms.montgomerycollege.edu/mcsyllabus/</u>

VII. Course Schedule

Date Combinatorial Game Theory Topic

Dute	Combinatorial Game meory ropic	Research Activity
Week 1	Appendix A	Introduction to Research
W 9/4	0 Combinatorial Games	Introduction and getting to know
F 9/6	0.1 Basic Terminology	research group members
	1 Basic Techniques	
	1.1 Greedy	
	1.2 Symmetry	
	1.3 Parity	
	1.4 Give Them Enough Rope!	
	1.5 Strategy Stealing	
	1.6 Change the Game!	
	1.7 Case Study: Long Chains in Dots & Boxes	
Week 2	2 Outcome Classes	Introduction to Nim
M 9/9	2.1 Outcome Functions	
W 9/11	2.2 Game Positions and Options	
F 9/13	2.3 Impartial Games: Minding your P's and	
	N's	
	2.4 Case Study: Roll the Lawn	

ſ	2.5 Cree Study Timber	
	 Case Study: Timber Case Study: Partizan Endnim 	
Week 3	2.6 Case Study: Partizan Endnim3 Motivational Interlude	Understanding classic Nim
M 9/16	3.1 Sums	
W 9/18	3.2 Comparisons	
F 9/20	•	
F 9/20	3.3 Equality and Identity3.4 Case Study: Domineering	
Mook A	, 5	Understanding Nim on Cranhs
Week 4 M 9/23	4 The Algebra of Games4.1 The Fundamental Definitions	Understanding Nim on Graphs
W 9/25	4.2 Games Form a Group with a Partial Order	
F 9/27	4.2 Games Form a Group with a Partial Order 4.3 Canonical Form	
1 3/27	4.4 Case Study: Cricket Pitch	
	4.5 Incentives	
	Incentives	
Week 5	5 Values of Games	Nim on Graphs Game Tree Program
M 9/30	5.1 Numbers	Development:
W 10/2	5.2 Case Study: Shove	Design the program
F 10/4	5.3 Stops	 Develop program flow chart
0, .	5.4 A Few All-Smalls: Up, Down, and Stars	bevelop program now enalt
	5.5 Switches	
	5.6 Case Study: Elephants & Rhinos	
	5.7 Tiny and Miny	
	5.8 Case Study: Toppling Dominoes	
	5.9 Proofs of Equivalence of Games and	
	Numbers	
Week 6	6 Values of Games	Nim on Graphs Game Tree Program
M 10/7	6.1 Numbers	Development:
W 10/9	6.2 Case Study: Shove	Code the program
F 10/11	6.3 Stops	 Debug the program
	6.4 A Few All-Smalls: Up, Down, and Stars	
	6.5 Switches	
	6.6 Case Study: Elephants & Rhinos	
	6.7 Tiny and Miny	
	6.8 Case Study: Toppling Dominoes	
	6.9 Proofs of Equivalence of Games and	
	Numbers	
Week 7	Nim on Graphs Game Tree Program Development:	
M 10/14	Test the program	
W 10/16 F 10/18		
	Personal Nim on Cranks with partners	
Week 8	Research Nim on Graphs with partners	
M 10/21 W 10/23	Details TBA	
-		
F 10/25 Week 9	Personal Nim on Granks with partners	
weeк 9 М 10/28	Research Nim on Graphs with partners Details TBA	
W 10/28 W 10/30		
VV 10/50		

F 11/1	
Week 10	Research Nim on Graphs with partners
M 11/4	Details TBA
W 11/6	
F 11/8	
Week 11	Research Nim on Graphs with partners
M 11/11	Details TBA
W 11/13 F 11/15	
Week 12	Research Nim on Graphs with partners
M 11/18	Details TBA
W 11/20	
F 11/22	
Week 13	Presentation drafting
M 11/25	
Week 14	Presentation drafting
M 12/2	
W 12/4 F 12/6	
Week 15	Presentation practice
M 12/9	
W 12/11	
F 12/13	
Final	Final Presentation
Exam	
M 12/16	