THIS ADDENDUM IS TO PROVIDE ANSWERS TO THE FOLLOWING QUESTIONS:

NOTE: Similar requests for information that were received from different Contractors have been grouped under a single addendum item where appropriate, with a single comprehensive answer provided.

The following items offer clarifications that do not change any requirements of the RFP documents.

Item 2-1 Question: E5.02 Detail Notes. Please confirm that access to an on-site client workstation to perform these steps, by a factory authorized Lenel VAR, will be made available by Montgomery College.

Answer: The College will provide a connection to the server from a MCFNet connected workstation, vendor must be onsite to connect.

Item 2-2 Question: E5.02 Detail Notes. Please confirm that all necessary software licenses for the additional readers locations being installed are existing.

Answer: Software licenses for additional readers are available in the software already.

The following items offer clarification that do change the requirements of the RFP documents. PLEASE MAKE CHANGES TO THE RFP DOCUMENTS AS FOLLOWS:

Item 2-3 Question: E5.02 Detail Notes: Please clarify labor scope described here. If the ACUXL 16 Plus Intelligent Controller, LFSP FPO150/250 Cabinet, and Spare Lenel RRE-4 modules are existing, some of the scope items described will not be required. Specifically, related to Note 5 – since the devices are existing (and presumed online) there will be no programming required to connect the system into the College Central System.

Answer: ACUXL16 Plus and FPO150/250 are existing, RRE-4s will need to be provided. ACU is connected to system currently so no programming is needed for this, but the RRE-4s will need to be programmed into the system.

Item 2-4 Question: E5.02, In Note 4 there are references to additional system design, shop drawings, calculations and programming. The scope of work as defined has both component and system design requirements already specified, and the RRE-4 control devices already installed in Rm MT0026C. Please clarify if this representation is accurate. Our understanding is that this will limit the scope of Note 4 to the programming needed to name/activate the new door devices being terminated on these existing boards, and configuring/testing their operation.

Answer: RRE-4s will need to be programmed in the system.
Item 2-5 **Question:** Refer to Specification Section 087100 Door Hardware, Page 15. Per Sheet E5.02, the 2 Lenel RRE-4 controls are existing. Please confirm these do not need to be provided as part of the hardware spec.

Answer: RRE-4 controllers will need to be provided. The ACUXL16 Plus and FPO150/250 are existing.

Item 2-6 **Question:** Refer to Specification Section 087100 Door Hardware, Page 14. Set #2 – shows as being used for Door 002, and does not indicate Electrified Hardware. However, A601 Door Schedule identifies HW Set #1 for Door 002. Please Clarify.

Answer: Door 002 is not a locking door and should use Hardware Set #2.

Item 2-7 **Question:** Refer to Specification Section 087100 Door Hardware, Page 14. Set #3 – shows one HID Reader. Based on lock Specification ML20932 x SEC and Drawing E2.01, it assumed this door requires both Entry and Exit Readers. Please Clarify.

Answer: Yes, this hardware set should have had 2 readers on it.

Item 2-8 **Question:** Our team went over the construction document and discover some inconsistency in the labeling of Drawing Index and E4.01 FRIST FLOOR PLAN-FIRE ALARM-NEW WORK is missing in the construction document.

Answer: The electrical section of the drawing index is incorrect. There is no fire alarm plan issued with the RFP documents. The List of Drawings has been reissued in its entirety and included in this Addendum.

Item 2-9 **DELETE** Part 6.2 on Page 002113-4 in its entirety and replace with the following:

6.2 Offerors must submit one original hard copy of Technical Proposal with original ink signatures, plus one electronic version of Technical Proposal saved as a PDF on a clearly marked compact disc (CD) or a clearly marked USB flash drive with the name of the firm and RFP No. The PDF must be a single, appropriately bookmarked and text-searchable PDF. Originals of technical proposal submission should be bound with binder clips or placed in three-ring binders and no spiral binding should be used.

Item 2-10 **DELETE** first paragraph on Page 002413-1 in its entirety and replace with the following:

Proposals, one original hard copy, plus one electronic version of Technical Proposal (Part A) saved as a PDF on a clearly marked compact disc (CD) or a clearly marked USB flash drive with the name of the firm and RFP No., and one original and two copies of Price Proposal (Part B) shall be submitted on the enclosed Proposal Forms, properly signed with the required attachments, if any, in the separately sealed envelopes and address to:
Item 2-11 **ADD** Specification Section 237313 INDOOR AIR HANDLING UNITS to the project manual.

Item 2-12 **EXTEND** the RFP closing date and time from 3:00 p.m. on April 1, 2020 to **3:00 p.m. on April 7, 2020**.

Index of Attachments to Addendum

List of Drawings or Portions Reissued in Entirety

LIST OF DRAWINGS

Specification Sections or Portions Reissued in Entirety

237313 Indoor Air Handling Units

Drawings Reissued in Entirety

- COVER SHEET
- G011 LIFE SAFETY PLANS
- S1.01 PLANS & ELEVATIONS
- S2.02 SECTIONS & DETAILS
- A101 GROUND FLOOR PLAN
- A112 FIRST FLOOR RCP
- A607 FINISH SCHEDULE AND DETAILS
- M0.01 MECHANICAL LEGEND, ABBREVIATIONS AND GENERAL NOTES
- M2.01 GROUND FLOOR PLAN – DUCTWORK – NEW WORK
- M2.02 FIRST FLOOR PLAN – MECHANICAL – NEW WORK
- P2.01 FIRST FLOOR PLAN – PLUMBING – NEW WORK
- E2.01 – FIRST FLOOR PLAN – POWER & SPECIAL SYSTEMS – NEW WORK

Sketches

NONE

Items Issued for Informational Purposes

BKM Drawing Narrative dated 3/25/2020

Please **sign** below to acknowledge receipt of this Addendum and return with the **Technical Proposal submission**. Failure to return this Acknowledgement of Addendum may deem a proposal nonresponsive.

Patrick Johnson, MBA
Director of Procurement
ADDENDUM #1
Issued: March 27, 2020

NOTE: ACKNOWLEDGEMENT OF RECEIPT OF RFP ADDENDA WILL NOT BE ACCEPTED BY FACSIMILE OR E-MAIL.

___________________________________ ______________________________
Company Name Authorized Signature

___________________________________ ______________________________
Date Printed/Typed Signature
LIST OF DRAWINGS

GENERAL
G0.00 – COVER SHEET
G0.11 – SAFETY PLANS

STRUCTURAL
S0.01 – STRUCTURAL GENERAL NOTES & SPECIAL INSPECTION SCHEDULE
S1.01 – STRUCTURAL PLAN & ELEVATIONS
S2.01 – STRUCTURAL SECTIONS & DETAILS
S2.02 – STRUCTURAL SECTION & DETAILS

ARCHITECTURAL
A0.01 – LEGENDS, SYMBOLS & ABBREVIATIONS
A0.12 – PARTITION TYPES
A0.15 – TYPICAL PARTITION DETAILS
AD1.01 – DEMOLITION PLAN – GROUND FLOOR
AD1.02 - DEMOLITION PLAN – FIRST FLOOR
AD1.11 – DEMOLITION RCP – GROUND FLOOR
AD1.12 – DEMOLITION RCP – FIRST FLOOR
A1.01 – GROUND FLOOR PLAN
A1.02 – FIRST FLOOR PLAN
A1.12 – REFLECTED CEILING PLAN – FIRST FLOOR
A4.01 – ENLARGED PLANS & ELEVATIONS
A6.01 – DOOR SCHEDULES
A6.02 – FINISH SCHEDULE AND DETAILS
A6.03 – FINISH PLAN AN DSCHEDULE

MECHANICAL
M0.01 – MECHANICAL LEGEND ABBREVIATION AND GENERAL NOTES
M1.01 – GROUND FLOOR PLAN – MECHANICAL – DEMOLITION
M1.02 – FIRST FLOOR PLAN – MECHANICAL – DEMOLITION
M2.01 – GROUND FLOOR PLAN – DUCTWORK – NEW WORK
M2.02 – FIRST FLOOR PLAN – DUCTWORK – NEW WORK
M3.01 – GROUND FLOOR PLAN – HVAC PIPING – NEW WORK
M3.02 – FIRST FLOOR PLAN – HVAC PIPING – NEW WORK
M4.01 – PART MECHANICAL ROOM PLAN – MECHANICAL – NEW WORK
M5.01 – MECHANICAL SECTIONS
M6.01 – AUTOMATIC TEMPERATURE CONTROLS AND SCHEMATICS
M7.01 – MECHANICAL DETAILS
M8.01 – MECHANICAL SCHEDULES
PLUMBING

P2.01 – FIRST FLOOR PLAN – PLUMBING – NEW WORK

ELECTRICAL

E0.01 – ELECTRICAL LEGEND, ABBREVIATIONS AND GENERAL NOTES
E0.02 – LIGHTING FIXTURE SCHEDULE, SEQUENCE OF OPERATIONS AND LEGEND
E1.01 – BASE FLOOR PLAN – ELECTRICAL
E1.02 – GROUND FLOOR PLAN – ELECTRICAL – DEMOLITION
E1.03 – FIRST FLOOR PLAN – ELECTRICAL – DEMOLITION
E1.04 – SECOND FLOOR PLAN – ELECTRICAL
E2.01 – FIRST FLOOR PLAN – POWER AND SPECIAL SYSTEMS – NEW WORK
E3.01 – FIRST FLOOR PLAN – LIGHTING – NEW WORK
E4.01 – MECHANICAL ROOM PART PLANS – POWER – DEMOLITION AND NEW WORK
E5.01 – ELECTRICAL DETAILS
E5.02 – ELECTRICAL DETAILS
E6.01 – ELECTRICAL PANEL SCHEDULES

END OF LIST OF DRAWINGS
SECTION 237313 – INDOOR AIR HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Scope: Extent of air handling unit work required by this Section is indicated on the drawings, by requirements of this Section, and all other Division-23 Sections.

B. Refer to requirements of Division-26.

1.2 QUALITY ASSURANCE

A. Manufacturer’s Qualifications: Provide air handling units that are the standard product of an equipment manufacturer regularly engaged in the production of such units who issues complete catalog information on such products. Units shall not be fabricated by the Contractor.

B. Certifications: Provide certified ratings of units based on tests performed in accordance with ARI 430.

C. Codes and Standards: Provide air handling units conforming to the following:

1. Air Movement and Control Association, Inc. (AMCA): Comply with applicable AMCA including:
 a. 210 Laboratory Methods of Testing Fans for Rating Purposes
 b. 500 Test Method for Louvers, Dampers, and Shutters

2. Air-Conditioning and Refrigeration Institute (ARI): Comply with applicable ARI including the following:
 a. 410 Forced-Circulation Air-Cooling and Air-Heating Coils
 b. 430 Central-Station Air-Handling Units

4. National Electrical Manufacturers Association (NEMA): Except for motors, provide electrical components required as part of air handling units, which comply with NEMA Standards.

6. Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA): Comply with applicable SMACNA standards including "HVAC Duct Construction Standards - Metal and Flexible."

7. Underwriters Laboratories, Inc. (UL): Except for motors, provide electrical components required as part of air handling units, which have been listed and labeled by UL.

1.3 SUBMITTALS

A. Product Data: Submit manufacturer's technical product data for air handling units showing dimensions, weights, capacities, ratings, fan performance with operating point clearly indicated, motor electrical characteristics, and finishes of materials, and installation instructions.

B. Shop Drawings: Submit shop drawings showing unit dimensions, weight loadings, required clearances, field connection details and methods of support. Draw to a scale of one half inch to one foot (13 mm to 300 mm), using same sheet size as Contract Drawings. Include field fabricated mixing boxes, dampers and duct connections.

C. Maintenance Data: Submit maintenance instructions, including instructions for lubrication, filter replacement, motor and drive replacement, and spare parts lists. Include this data, product data, shop drawings, and wiring diagrams in operating and maintenance manuals.

1.4 DELIVERY, STORAGE AND HANDLING

A. Delivery: Deliver air handling units with factory-installed shipping skids and lifting lugs; pack small components in factory-fabricated protective containers.

B. Handling: Handle air handling units carefully to avoid damage to components, enclosures, and finish. Do not install damaged components; replace and return damaged components to air handling unit manufacturer.

C. Storage: Store air handling units in clean dry place and protect from weather and construction traffic.

D. Unloading: Comply with manufacturer's rigging and installation instructions for unloading air handling units, and moving them to final locations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the work, shall be limited to the following:

1. Daikin

2. Trane
3. York
4. Carrier

2.2 INDOOR AIR HANDLING UNITS

A. General:

1. Unit may consist of a fan section, chilled water cooling coil section, heating coil section, filter section, access section and mixing box or combination filter mixing box, as indicated on the drawings.

2. All units shall be supplied with a longitudinal structural steel perimeter base rail that shall serve as a housekeeping rail when unit is installed. Base rail shall be installed by the manufacturer at the factory. Perimeter lifting lugs for overhead lifting shall be provided. Slinging of units in lieu of lifting lugs is not acceptable.

3. Provide one additional set of replacement filters.

4. Provide magnehelic filter gauges for each filter bank, graduated to read from 0 to 3" W.G. (0 to 75 Pa).

5. At the contractor's discretion, the units may be shipped in component modules.

6. The units shall be disassembled and reassembled; see paragraph 3.02 of this section.

B. Unit Cabinet:

1. Unit panels for each section of unit shall be 2-inch (50 mm) thick, thermal break, double-walled assembly, foam injected insulation with an R-value of not less than R-13. Outer panel shall be constructed of 20 gauge (1.3 mm) painted, galvanized steel. Inner panel shall be constructed of 22 gauge (1 mm) G90 galvanized steel. Entire floor shall also be double-walled with the same liner as the side and roof panels.

2. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, maximum 5 inches of positive or 6 inches of negative static pressure. Deflection shall be measured at the panel midpoint.

3. Hinged access doors shall be full height insulated double-wall with heavy duty stainless steel hinges and chromed plated dogged fasteners to provide air-tight compression of the perimeter gasket. Doors shall be lift-off type, removable at hinge pin to provide maximum service access.

C. Fan Section:

1. The fan array will be arranged with high performance direct drive, single inlet, plenum fans with backwards inclined, high efficiency welded-aluminum or high-performance composite impeller with galvanized or aluminum support frame.
2. The fans are driven by long-life, low-temperature brushless DC electronically commutated motor (EC-Motor) with external rotor and integrated maintenance-free electronic circuitry and electronics. The motor is manufactured with maintenance-free, permanently lubricated ball bearings and shall be statically and dynamically balanced in accordance with ISO 1940 part 1. The motor shall be closed, protection level IP 54, thermal class 155 with permissible operating temperature of -13°F to 140°F. Motor efficiency class shall comply with IE4. Fan characteristic curves indicate measurements on a chamber test in accordance with ISO5801. The three-phase external rotor motor integrated into the fan hub meets the requirements for circulating electric machines set forth in DIN EN 60 034-1 (VDE 0530 Part 1).

3. Manual blank-off plates shall be provided to block fan airflow, one plate to be provided per array.

4. Fan Array shall be listed per UL 1995.

5. Fan assemblies shall be prewired with wire whips and plug connectors.

6. Fan system manufacturer must stock replacement parts in North America.

7. The fan bulkhead wall shall be constructed in a manner for easy field assembly, constructed of 14 gauge G90 formed sheet metal. The bend profile at each panel’s seam shall provide vertical structural support for the bulkhead wall.

8. The control panel shall include an external disconnect and shall be UL or ETL listed. Each panel contains a lockable Hand/Off/Auto switch for optional manual speed control. The panel accepts a 0-10VDC signal when in Auto mode, and can be controlled locally when in Hand Mode.

9. There is a system alarm contact that the BAS can use to check the status of the Q-PAC System. There is a system enable contact that the BAS can use to enable or disable the Q-PAC System, along with a safety circuit terminations.

10. All Q-PAC components shall be sized to fit through a 20” x 40” access opening.

D. Coil Sections:

1. All coil sections shall be constructed of insulated mill galvanized steel panels. All coils must be easily removable from top or side of horizontal units and from the side of vertical units. Condensate drain pan shall be insulated double-wall stainless steel, sloped in two (2) directions toward drain fitting with a recessed vertical exit non-trapping design with integral elbow for side discharge and female pipe thread connection. A maximum of one drain shall be supplied for each cooling coil sections. Unless this drain pan is continuous between the fan and coil sections, the fan section shall not be allowed to have a drain. Moisture shall not carry over to the fan. Moisture eliminators downstream of cooling coils are not acceptable. Cooling unit shall be sized to ensure against moisture carry over without
the use of moisture eliminators.

2. All coils shall be tested at 325 psig (2210 kPa) air pressure while submerged in water. Coil performance shall be certified in accordance with ARI Standard 410. All coils shall have mill galvanized steel casings.

3. Chilled water coils shall be aluminum plate fins with belled collars and bonded to 1/2 inch (13 mm) OD copper tubes by mechanical expansion. Coils shall have steel or non-ferrous headers with MPT connections. Working pressure shall be 250 psig (1700 kPa) at 300°F (150°C). Coils shall be drainable and have non-trapping circuits. Headers shall have drain and vent connections. Vents and drains that are installed in coil return or supply bends promote coil tube fatigue and shall not be allowed.

4. Hot water coils shall be aluminum plate fins with belled collars bonded to 1/2 inch (13 mm) OD copper tubes by mechanical expansion. Coils shall have steel headers with MPT connections. Working pressures shall be 250 psig (1700 kPa) at 300°F (150°C). Headers shall have drain and vent connections.

5. Tube wall thicknesses shall not be less than 0.020 inches (.5 mm) and tube diameter on all coils shall not be less than 1/2 inch (13 mm) OD.

6. Chilled water coil face velocities shall not exceed 500 fpm (2.5 m/g) except where indicated on drawings.

7. Coil turbulators will not be acceptable.

E. Mixing Box Sections:

1. Each mixing box section where applicable, shall be designed and constructed to house the specific type of filter shown on the equipment schedule. A double-walled hinged access door shall be provided on the side of the section.

2. Mixing boxes shall have parallel blade, interconnecting outside air and return air dampers. All mixing boxes shall have a double-walled hinged access door.

3. All damper blades shall be double skin galvanized steel airfoil, mechanically fastened to a 1/2 inch (13 mm) diameter steel rod rotating in stainless steel bearing. (Dampers shall be sectionalized to limit blade length to no more than 48 inches (1200 mm) so as to minimize blade warpage and to assure tight closure.)

4. Return damper shall be rated for a maximum leakage rate per square foot of 4 cfm (2 L/s) @ 1” wc (250 Pa) and 9 cfm (4.2 L/s) @ 4” wc (1000 Pa). Provide ultra-low leak type for outside air damper.

F. Filters:

1. Rigid filter frames shall be welded galvanized steel, constructed as an integral part of the unit. Filter frames shall be galvanized steel and provide
positive seals around the filters.

2. Pre-filters shall be 2-inch (50 mm) thick non-woven cotton fabric, treated with adhesive and continuously laminated to a supported steel wire grid. Filters shall be 30% ASHRAE 52.1-1992 efficient with a minimum MERV of 8.

3. Cartridge filters shall be constructed by pleating a continuous sheet of fine-fiber media into closely spaced pleats with safe-edged aluminum separators. The filter shall be sealed into a metal frame assembled in a rigid manner. All cartridge filters to be furnished with a pre-filter to provide extended cartridge life. Manufacturer shall supply side access filter rack capable of holding cartridge filters and 2-inch (50 mm) pre-filters. Cartridge filters shall be 80–85% ASHRAE 52.1-1992 efficient with a minimum MERV of 13.

4. Filter sections shall have double walled hinged access doors.

5. Magnehelic gauges shall be provide for each filter bank.

G. Access and Plenum Sections:

1. Access and plenum sections shall be installed where indicated on the drawings.

2. Access sections shall have a double-walled hinged door.

2.3 MOTORS

A. See Division-23 Section, "Electrical Provisions for HVAC Equipment" for minimum motor efficiencies and other requirements.

PART 3 - EXECUTION

3.1 INSTALLATION OF AIR HANDLING UNITS

A. General: Install air handling units where indicated on the drawings, in accordance with equipment manufacturer's published installation instructions.

B. Access: Provide access space around air handling units for service as indicated on the drawings, but in no case less than that recommended by the manufacturer.

C. Mounting: Mount air handling units with internal factory furnished isolators in accordance with manufacturer's instructions.

D. Electrical Wiring: Install electrical devices furnished by manufacturer but not specified to be factory-mounted.

1. Verify that electrical wiring installation is in accordance with manufacturer's submittal and installation requirements of Division-26 sections.

E. Piping Connections: Provide piping, valves, accessories, gauges, supports, and
flexible connections as indicated on the drawings. Locate freezestats and trap air handling unit drain-pan connections according to manufacturer's recommendations.

F. Duct Connections: Provide ductwork, accessories, and flexible connections as required.

G. Extend condensate drain to nearest drain. Provide trap at drain pan at least 1" (25 mm) deeper than total supply fan pressure in inches of water column. For indoor units, provide a concrete pad of adequate height to allow for proper installation of condensate drain trap above floor.

H. Provide MERV 13 filter media at all return air inlet locations throughout the duration of construction. Filter media shall not be removed until final filters are installed in the air handling units.

3.2 AIR HANDLING UNIT DISASSEMBLY AND REASSEMBLY

A. Where required, the air handling units shall be disassembled by the mechanical contractor, transported with rigging as required to the assigned mechanical rooms located at the building interior, and reassembled in their permanent location. The air handling unit panels, doors, coils, fan base, superstructure, etc, shall be 100% bolted construction to facilitate the disassembly and reassembly procedure. Welded construction shall not be permitted. The manufacturer shall include costs for factory authorized representative(s) to supervise the complete disassembly and reassembly of the air handling units.

B. Upon reassembly of the units, the unit manufacturer representative(s) shall inspect the installation and certify that the unit meets the manufacturer’s standards. The inspection/certification shall include, but not be limited to, the following:

1. Pulley alignment and adjustment.
2. Superstructure inspection verifying all panels and unit frame are installed to manufacturer’s standards.
4. Motor operated damper adjustment and operation verification.
5. Fan motor amperage reading with the fan operating at 60Hz.
6. Belt tension reading and adjustment.
7. Drain pan inspection.
8. Access door operation and adjustment.
10. Pressure test(s) of the entire unit shall be performed and the maximum allowable leakage shall be one percent (1%) at 125% times the unit operating pressure, but not less than six inches (6") w.c.
C. The owner shall be invited to be present during all testing and inspections and shall be given a minimum of one week notice (5 business days) prior to testing and certification.

D. Upon completion of the inspection and testing, the manufacturer shall provide the installing contractor and the owner a type written report indicating deficiencies found. The deficiencies shall then be corrected to the satisfaction of the manufacturer and the owner.

E. Upon completion of the inspection, testing, certification and start-up, the manufacturer shall provide the owner with a signed letter indicating that all warranties, either implied or expressed, shall remain in effect for a period of two years from the date of final approval by the manufacturer and the owner. The letter shall include the unit serial number, model number, as well as the location and address of the installed units.

3.3 FUNCTIONAL PERFORMANCE TESTING AND VERIFICATION

A. General: In addition to the tests required during and after installation of all mechanical systems, as well as any other formal commissioning requirements, the unit manufacturer shall perform functional performance tests to verify that all systems are designed, installed, calibrated and adjusted to perform as required in the Contract.

B. Comply with all applicable specification sections including, but not be limited to, “Basic HVAC Requirements”, “Testing, Adjusting and Balancing”, “Automatic Temperature Controls” and “Commissioning”, where applicable.

C. Prior to functional performance testing, all indicating, recording and control devices shall be calibrated. A verification calibration report shall be provided with the final test report.

D. Provide functional performance testing to verify proper operation of each control sequence associated with the unit indicated throughout the contract documents.

E. Failure of Tests: Should any test, verification, or demonstration fail to meet the specification requirements, the component of the system causing the failure shall be repaired, replaced or readjusted. The failed test, verification, or demonstration shall then be repeated.

F. A “Functional Performance Test Verification Form” is included at the end of Section 230900. This form (electronic version is available upon request) shall be completed for each air handling unit provided under this contract.

G. Test Report: Upon satisfactory verification of calibration and functional performance tests, a copy of the final test results shall be bound in the operations and maintenance manual. The final report shall also include a full compliance statement, on company letterhead, indicating that all units are installed and functioning per the contract requirements including drawings, specifications, control sequences and accepted submittals.

H. The air handling unit installation shall not be considered complete until all functional performance verification forms, calibration reports and compliance...
statement have been submitted and reviewed. Submit in accordance with the submittal requirements indicated elsewhere in these specifications.

3.4 EXTRA STOCK

A. Filters: Furnish one (1) extra set of filters for each air handling unit to the owner. In addition, install new filters at completion of air handling system work, and prior to testing, adjusting, and balancing work. Do not operate fans unless filters are in place.

END OF SECTION 237323
<table>
<thead>
<tr>
<th>UNIT NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRAWING INDEX

PROJECT ALTERNATES

- AOD ALTERNATE - PROVIDE HVAC PIPING MODIFICATION TO AIR HANDLING UNIT EQUIPMENT SERVING LIBRARY.

MECHANICAL LEGEND ABBREVIATIONS & GENERAL NOTES

- FIRST FLOOR PLAN - HVAC PIPING - NEW WORK
- GROUND FLOOR PLAN - MECHANICAL - DEMOLITION & NEW WORK
- PARTITIONS - TYPES
- AIR HANDLING UNIT EQUIPMENT SERVING LIBRARY
- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL DRAWINGS

- LIGHTING FIXTURE SCHEDULE, SEQUENCE OF OPERATIONS & LEGEND
- BASEMENT FLOOR PLAN - ELECTRICAL
- GROUND FLOOR PLAN - ELECTRICAL - DEMOLITION
- FIRST FLOOR PLAN - ELECTRICAL - DEMOLITION
- SECOND FLOOR PLAN - ELECTRICAL
- FIRST FLOOR PLAN - POWER AND SPECIAL SYSTEMS - NEW WORK
- FIRST FLOOR PLAN - LIGHTING - NEW WORK
- MECHANICAL ROOM PART PLANS - POWER - DEMOLITION AND NEW WORK
- ELECTRICAL DETAILS
- ELECTRICAL PANEL SCHEDULES

MECHANICAL ROOM PART PLANS - POWER - DEMOLITION AND NEW WORK

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - POWER - DEMOLITION AND NEW WORK

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - POWER - NEW WORK

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - POWER - ALTERNATE

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - NEW WORK

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - ALTERNATE

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - NEW WORK - ALTERNATE

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - ALTERNATE

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - NEW WORK

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - ALTERNATE

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES

ELECTRICAL ROOM PART PLANS - ELECTRICAL - NEW WORK

- AUTOMATIC TEMPERATURE CONTROLS
- MECHANICAL DETAILS
- MECHANICAL SCHEDULES
WALL OPENING REINFORCING DETAIL

1. SCAN CONCRETE FOR REBAR LOCATION PRIOR DRILLING ANCHOR HOLES TO AVOID DAMAGING EXISTING REBAR.
2. WALL OPENING MUST BE SAW CUT. NO HAMMER DRILLING IS ALLOWED. CHANNEL HEADER AND KICKER MUST BE INSTALLED PRIOR TO SAW CUTTING.

BRACE CONNECTION DETAIL

1. SCAN CONCRETE FOR REBAR LOCATION PRIOR DRILLING ANCHOR HOLES TO AVOID DAMAGING EXISTING REBAR.
2. WALL OPENING MUST BE SAW CUT. NO HAMMER DRILLING IS ALLOWED. CHANNEL HEADER AND KICKER MUST BE INSTALLED PRIOR TO SAW CUTTING.
EXISTING WALL TO REMAIN

GWB WALL

EXISTING DOOR

MECHANICAL ROOM

NEW WORK LEGEND

- EXISTING DOOR
- EXTENT OF CONCRETE SLABS
- DOOR
- EXISTING WALL

GENERAL NOTES:
1. contractor shall field verify existing conditions and measurements, notify architect regarding discrepancies between existing conditions and the contract documents prior to commencing work.

2. although intended to convey appropriate information, these drawings have been prepared from limited field measurements. as such, drawings may contain discrepancies due to concealed conditions, inaccuracies in original drawings, inaccessible locations, unrecorded building alterations, and other conflicting information. contractor shall field verify existing conditions and measurements, notify architect regarding discrepancies prior to commencing work.

3. provide wall sleeve at new penetration. provide waterproof seal at new penetration - see structural drawings for location.

1/8" = 1'-0"
FIRST FLOOR FURNITURE PLAN - Callout 1

Section 1

Section 2

Section 3

EXISTING WINDOW ELEVATION

REFRIGERATOR
COUNTERTOP
CASEWORK

LAB/CLASSROOM
FINANCE
922 SF

OWNER SUPPLIED
55" SCREEN, SURFACE MOUNTED

OFFICE
124 SF

SHAFT
MECHANICAL

13' - 3 1/2"

3' - 0"

8'

4'

6'

D

6'

2

3

LAB

ARL: G:\19106.01\Drawings\Acad\Prototype\PRO XXX Plotted By: James Weaver | 11/15/2019 9:26 AM
PLUMBING GENERAL NOTES

1. BEND ALL IN CONCRETE STRUCTURALይልልችወረርናልል ለጅ ልክር።
2. ALL MECHANICAL TAKEOFFS TO BE IN PIPING AND MACHINERY SCHEDULES.
3. PROVIDE A MINIMUM OF 10% OVERAGE FOR RESEARCH OF UTILITIES.
4. PROVIDE 15% OVERAGE FOR MECHANICAL, ELECTRICAL, AND STRUCTURAL TAKEOFFS.
5. CENTER LINES FOR ALL PLUMBING LINES ON DRAWINGS TO Align WITH Structure.
6. CENTER LINES FOR ALL DUCT WORK ON DRAWINGS TO Align WITH Structure.
7. PROVIDE 15% OVERAGE FOR POWER FOR MECHANICAL EQUIPMENT.
8. PROVIDE 10% OVERAGE FOR MACHINERY AND ELECTRICAL EQUIPMENT.
9. PROVIDE 10% OVERAGE FOR STRUCTURAL MATERIALS.
10. PROVIDE 15% OVERAGE FOR MECHANICAL EQUIPMENT.
11. PROVIDE 10% OVERAGE FOR ELECTRICAL EQUIPMENT.
12. PROVIDE 10% OVERAGE FOR MACHINERY.
13. PROVIDE 10% OVERAGE FOR STRUCTURAL MATERIALS.

MECHANICAL GENERAL NOTES

1. ALL MECHANICAL SYSTEMS, valves AND EQUIPMENT TO BE FLEXIBLE CONNECTIONS.
2. ALL MACHINES, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
3. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
4. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
5. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
6. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
7. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
8. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
9. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
10. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
11. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
12. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
13. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
14. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
15. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
16. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
17. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
18. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
19. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.
20. ALL PIPING, PUMPS, AND VALVES TO BE FLEXIBLE CONNECTIONS.

SPRINKLER GENERAL NOTES

1. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
2. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
3. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
4. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
5. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
6. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
7. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
8. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
9. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
10. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
11. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
12. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
13. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
14. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
15. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
16. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
17. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
18. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
19. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).
20. ALL SPRINKLER SYSTEMS TO BE PROVIDE TEMPORARY ELECTRICAL PROVISIONS TO ACCOMMODATE TEMPORARY UNIT(S).

MECHANICAL LEGEND

MECHANICAL ABBREVIATIONS

PROJECT NO. M0.01
DATE 05/26/2020
DRAWN BY D.C.
CONTRACTOR BKM
GRAPHIC SIZE: 206 X 302
ISSUED FOR: MBI FINANCE LAB SUITE 100
PROJECT MANAGER: MIKE KORNFIELD
ENGINEER: JAMIE KORNFIELD
DESIGNER: JAMIE KORNFIELD
MATERIALS: MASONRY, METAL, GLASS, WOOD, AND PLUMBING
ARCHITECTS: MACKLIN TOWER
HARRY HAYES ARCHITECTS
NON-REPRESENTATIVE MATERIALS: STEEL, CONCRETE, AND GLASS
REPRESENTATIVE MATERIALS: WOOD, PLUMBING, AND ELECTRICAL
"MECHANICAL," "ELECTRICAL," AND "PLUMBING" ARE USED FOR THE PURPOSE OF COMMUNICATION ONLY AND DO NOT NECESSARILY REFLECT THE MATERIALS OR METHODS USED IN THE CONSTRUCTION OF THE PROJECT.
"MECHANICAL," "ELECTRICAL," AND "PLUMBING" ARE USED FOR THE PURPOSE OF COMMUNICATION ONLY AND DO NOT NECESSARILY REFLECT THE MATERIALS OR METHODS USED IN THE CONSTRUCTION OF THE PROJECT.
GROUND FLOOR PLAN - DUCTWORK - NEW WORK

GENERAL NOTES:
1. SHALL FOLLOW MELIA ENGINEERING SPECIFICATIONS AND GENERAL NOTES.
2. SUPPLY AIR DUCTWORK FROM AHU-9 TO TERMINAL UNITS SHALL BE DOUBLE WALL RECTANGULAR DUCT. SEE SPECIFICATIONS FOR MATERIALS AND REQUIREMENTS.
3. PROVIDE TRAVELING LINES AS REQUIRED PER PLACED TERMINAL UNIT THROUGH TERMINAL BLOCK.
4. REFER TO GENERAL SPRINKLER NOTES FOR SPRINKLER WORK RELATED TO THIS AREA.
5. REFER TO M001 FOR MECHANICAL LEGEND, ABBREVIATIONS AND GENERAL NOTES.

DRAWING NOTES:
1. PROVIDE TRAVELING LINES INCLUDE RETURN AIR DUCTWORK UP TO STRUCTURE OVER EXISTING HVAC AND DOMESTIC WATER PIPING.
2. PROVIDE DOUBLE WALL RECTANGULAR MEDIUM PRESSURE SUPPLY AIR DUCTWORK UP TO TERMINAL UNITS.
3. PROVIDE DOUBLE WALL RECTANGULAR SUPPLY AIR DUCTWORK UP TO MBI SUITE ABOVE.
4. SUPPLY AIR DUCTWORK FROM AHU-9 TO TERMINAL UNITS SHALL BE DOUBLE WALL RECTANGULAR DUCT. SEE SPECIFICATIONS.
5. PROVIDE 1" SOUND LINING.
6. PROVIDE LOUVER WITH MINIMUM 45% FREE AREA. COORDINATE FINAL LOUVER COLOR WITH ARCHITECT.
7. 74"x24" OPEN ENDED RETURN AIR DUCTWORK WITH 1/2" ALUMINUM WIRE MECH SCREEN.
8. 30"x18" RETURN AIR DUCTWORK UP TO MBI SUITE ABOVE.
9. ROUTE NEW RETURN AIR DUCTWORK TIGHT TO STRUCTURE OVER EXISTING HVAC AND DOMESTIC WATER PIPING.
10. EXISTING CEILING MOUNTED AIR DEVICE. RE-INSTALL AIR DEVICE IN LOCATION INDICATED. TYPICAL.
11. PROVIDE TEMPORARY HEATING AND COOLING UNIT(S) TO SERVE MBI SUITE ABOVE AS REQUIRED. SEE M2.01.
12. SPRINKLER PIPING SHALL BE MODIFIED IN ACCORDANCE WITH NFPA 13 TO PROVIDE COMPLETE COVERAGE.
13. MODIFY EXISTING SPRINKLER PIPING AS REQUIRED THROUGHOUT PROJECT AREA TO ACCOMMODATE NEW WORK. ALL NEW WORK IS TO BE INSTALL IN ACCORDANCE WITH NFPA 13, 2019 EDITION.

REPLACEMENT SCALE: 1/8" = 1'-0"
1. PROVIDE FIRE DAMPER AT EXISTING FLOOR OPENING.

2. SUPPLY AIR DUCTWORK AND 24x18 RETURN AIR DUCTWORK DOWN THROUGH EXISTING SHAFT.

3. SUPPLY AIR DUCT DOWN TO GROUND FLOOR.

4. 20"x8" TRANSFER AIR DUCTWORK. PROVIDE TRANSFER AIR DUCT WITH 1" SOUND LINING. TYPICAL OF 4.

5. 36"x10" OPEN ENDED DUCT WITH 1/2" ALUMINUM WIRE MESH SCREEN. BALANCE TO 1,600 CFM.

6. REFER TO DRAWING M0.01 AND M0.02 FOR ADD ALTERNATE WORK RELATED TO THIS AREA.

7. PROVIDE ENGINEERED DUCT SILENCER TO ACHIEVE NC VALVES INDICATED ON THE SCHEDULES.

8. IN FRONT OF TERMINAL UNIT CONTROLLER. TYPICAL OF 8.

9. SEE GENERAL NOTES ON M0.01 FOR ADDITIONAL REQUIREMENTS.

10. CONTRACTOR SHALL PROVIDE TEMPORARY HEATING AND COOLING AS REQUIRED TO THE MBI SUITE.

11. CONTRACTOR SHALL INSTALL DUCT TIGHT TO THE BOTTOM OF STRUCTURE UNLESS NOTED OTHERWISE.

12. REFER TO M0.01 FOR MECHANICAL LEGEND, ABBREVIATIONS AND GENERAL NOTES.

13. REFER TO P2.01 FOR FIRE PROTECTION REQUIREMENTS RELATED TO THIS AREA.

14. DRAWING NOTES:

 1. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 2. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 3. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 4. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 5. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 6. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 7. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 8. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

 9. DRAWN TO SCALE 1/8" = 1'-0" (NOT TO SCALE)

15. GENERAL NOTES:

 1. PROVIDE ENGINEERED DUCT SILENCER TO ACHIEVE NC VALVES INDICATED ON THE SCHEDULES.

 2. REFER TO DRAWING M0.01 AND M0.02 FOR ADD ALTERNATE WORK RELATED TO THIS AREA.

 3. PROVIDE ENGINEERED DUCT SILENCER TO ACHIEVE NC VALVES INDICATED ON THE SCHEDULES.

 4. REFER TO DRAWING M0.01 AND M0.02 FOR ADD ALTERNATE WORK RELATED TO THIS AREA.

 5. PROVIDE ENGINEERED DUCT SILENCER TO ACHIEVE NC VALVES INDICATED ON THE SCHEDULES.

 6. REFER TO DRAWING M0.01 AND M0.02 FOR ADD ALTERNATE WORK RELATED TO THIS AREA.

 7. PROVIDE ENGINEERED DUCT SILENCER TO ACHIEVE NC VALVES INDICATED ON THE SCHEDULES.

 8. REFER TO DRAWING M0.01 AND M0.02 FOR ADD ALTERNATE WORK RELATED TO THIS AREA.

 9. PROVIDE ENGINEERED DUCT SILENCER TO ACHIEVE NC VALVES INDICATED ON THE SCHEDULES.

 10. REFER TO DRAWING M0.01 AND M0.02 FOR ADD ALTERNATE WORK RELATED TO THIS AREA.
FIRST FLOOR PLAN - PLUMBING - NEW WORK

GENERAL NOTES:
1. REFER TO M0.01 FOR PLUMBING LEGEND, ABBREVIATIONS AND GENERAL NOTES.
2. DRAWING NOTES:
3. 1/2" COLD WATER, 1/2" HOT WATER AND 1/2" HOT WATER RECIRCULATION PIPING EXTENDED FROM EXISTING RISER.
4. 2" SANITARY PIPING ROUTED IN PLENUM BELOW FLOOR. SLOPE SANITARY PIPING TOWARD EXISTING RISER AT 1% SLOPE.
5. 2" SANITARY AND 1" VENT PIPING CONNECTED TO EXISTING SANITARY AND VENT PIPING SERVING EXISTING ELECTRIC WATER COOLER.
6. 1/2" COLD WATER, 1/2" HOT WATER AND 1/2" HOT WATER RECIRCULATION PIPING EXTENDED FROM EXISTING RISER.
7. EXTEND NEW SPRINKLER PIPING FROM EXISTING 4" STAND PIPE RISER. INSTALL SPRINKLER SYSTEM IN ACCORDANCE WITH NFPA 13. PROVIDE FLOW SWITCH, PRESSURE GAUGE AND VICTAULIC TEST MASTER EXTENDED TO EXISTING 2" INSPECTORS TEST DRAIN RISER.

SERVICES:
1. CITY WATER INTAKE
2. CITY SEWER INTAKE
3. SANITARY INTAKE
4. FIRE WATER INTAKE
5. FIRE WATER DISCHARGE
6. REFRIGERANT VAPOR

FEATURING:
1. SPRINKLER HEADS
2. FIREHOSE REEL
3. METER BOX
4. BACKFLOW PREVENTER

NOTABLE SYSTEMS:
1. EXISTING FIRE PUMP SYSTEM
2. NEW FIRE PUMP SYSTEM
3. EXISTING WATER COOLER SYSTEM
4. NEW WATER COOLER SYSTEM

DRAWN BY: JMW
SCALE: 1/8" = 1'-0"
DATE: 3/25/2020

ADDENDUM #1
Addendum 1

<table>
<thead>
<tr>
<th>Project:</th>
<th>MC RV MT MBI FINANCE LAB SUITE 100 RENOVATIONS</th>
<th>Date:</th>
<th>03/25/2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Addendum #1 Drawing Narrative</td>
<td></td>
<td>BKM Project No: 19106.01</td>
</tr>
</tbody>
</table>

COMMENTS:

General:

Cover Sheet
- Drawing Index has been updated to reflect the correct drawings included in the bid documents.
- Sheets with changes related to addendum #1 have been identified.

G0.11 – Life Safety Plans
- The building height has been corrected to reflect the height form fire vehicle access to top occupiable floor.
- Notes regarding fire protections systems throughout the building have been revised.

Architectural:

A1.01 – Ground Floor Plan
- Wall sleeve and waterproofing notes added for new penetrations.

A1.12 – First Floor Reflected Ceiling Plan
- Classroom ceiling system has been modified to a cloud ceiling system.

A4.01 – Enlarged Plans and Elevations
- Enlarge Plan and Elevations have been revised.

A6.07 – Finish Schedules and Details
- Detail #6 – Transition Detail has been added.

Structural:

S1.01 – Plans and Elevations
- The louver opening has been relocated to reflect the new louver location.
- New penetrations have been provided for future conduit.

S2.02 – Sections and Details
- Wall opening detail has been revised.

Mechanical:

M0.01 “Mechanical Legend, Abbreviations, General Notes, Schedules and Details”
- General fire protection notes have been updated.
- Temporary heating and cooling requirements have been added to “General Notes”

M2.01 “Ground Floor Plan – Mechanical – New Work”
- The relief air louver and associated ductwork has been moved to accommodate future conduit penetrations.
- Temporary heating and cooling requirements have been indicated on the drawing.
M2.02 “First Floor Plan – Mechanical – New Work”
- Fire protection requirements in “General Notes” have been updated.
- Temporary heating and cooling requirements have been indicated on the drawing.

Plumbing:

P2.01 “First Floor Plan – Plumbing – New Work”
- Sprinkler Piping has been added throughout the project area.
- “Sprinkler Zone Assembly” detail has been added to show requirements for connection to existing standpipe.

Electrical:

E2.01 “First Floor Plan – Power & Special Systems – New Work”
- Note 24 has been added to provide monitor module for sprinkler flow/tamper switch.

Specifications:

23 73 10 – Indoor Packaged Air Handling Units
- Section 23 73 10 has been revised to reflect the basis of design air handling unit.

The related Drawings are attached with the changes clouded.